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Summary 

Collective wave accelerator schemes utilizing slow waves 
on an electron beam have an upper energy limit on the load 
particles set by the drive beam drift velocity. Typical intense 
electron beams operating near limiting current have drift veloc- 
ities between 0.7~ and O.Qc, setting an energy limit for protons 
of about 1 GeV. In order to collectively accelerate electrons or 
ions above this limit, the drive wave must have a phase velocity 
greater than electron beam drift velocity. The Ultralac concept 
utilizes the fast upper hybrid wave for particle acceleration. It 
has a phase velocity that is bounded only in the lower limit by 
the electron drift velocity. Calculations are presented showing 
the operating parameters of such a device including beam and 
wave parameters and achievable field gradients, load particle 
current limits and particle focusing. 

Introduction 

Up to now, attempts to build a collective particle accel- 
erator using intense electron beam technology has emphasized 
the use of slow waves. The first concept suggesting the use of 
beam slow waves for acceleration of particles was the autores- 
onant accelerator (ARA) described by Sloan and Drummond’ 
(1974). The ARA concept utilized the slow upper hybrid mode 
on an unneutralized relativistic electron beam for ion acceler- 
ation. The second collective wave concept forwarded was the 
slow space wave accelerator proposed by Sprangle, Manheimer 
and Drobot’ (1976). Since both techniques use slow waves, a 
velocity barrier will exist on the load particles, resulting in a 
final energy limit equal to the mass ratio times the kinetic en- 
ergy of the electrons. In actual practice, the ultimate velocity 
may be limited to a lower useful value by the available field 
gradient. Obviously slow waves on an electron beam are of no 
use for high energy applications. 

The Ultralac Concept 

Up to now, little or no work has been done on excitation 
of waves on electron beams in an effort to collectively accel- 
erate particles to ultra-relativistic energies. In a magnetized 
bounded electron beam, many different linear waves exist in the 
fluid model. For the lowest radial and azimuthally symmetric 
modes, eight different branches of the dispersion relationship 
can be plotted on a Brillouin diagram3. The electromagnetic 
waves have four branches, the modified TM01 and TEol waves, 
each with a positive and negative phase velocity branch. Four 
other eigenmodes of a electromechanical nature can exist in 
this system due to the collective aspects of the electron beam. 
These electrokinetic modes are the fast and slow space charge 
waves and the fast and slow upper hybrid waves. Of all these 
waves, only the fast upper hybrid mode satisfies all of the accel- 
erator criteria for ultra-relativistic particles. The upper hybrid 
modes have also been referred to as Trivelpiece-Gould4 modes, 
vortex waves’, and cyclotron modes3. For waves whose up- 
per hybrid frequency is less than the empty waveguide cutoff 
for the TMol electromagnetic wave, a quasi-static approxima- 
tion can be used where the electric field is derivable from the 
gradient of a scalar potential. 

Ideally, if the fast upper hybrid mode can be excited pre- 
cisely at the point which has phase velocity equal to c, this 
mode would then become extremely useful for the collective 

acceleration of ultra-relativistic particles. This is the Ultra- 
lac concept. Since the fast upper hybrid mode is a positive 
energy mode in a non-neutral particle beam, energy must be 
added in order to excite it. We propose using a three wave 
method employing a wiggler to couple energy from the neg- 
ative energy modes to the fast wave. The success of using 
wigglers to excite the positive energy electromagnetic modes 
in beam-guide systems is well understood both theoretically 
and experimentally’. In particular, the free electron laser has 
been successfully developed, using the parametric excitation of 
fast waves. In our case we want to excite a fast electrokinetic 
and not an electromagnetic mode. This condition can be en- 
sured if the wave is excited at a frequency below the lowest 
guide electromagnetic cutoff frequency. 

Using a linear, electrostatic fluid theory for a confined flow 
beam in a finite magnetic field, we can derive a relativistic 
dispersion relationship. If a relativistic rigid rotor equilibrium 
is used, we recover a dispersion relationship similar to that of 
Potz15 (1960). The use of this dispersion relation allows us to 
calculate the trapping electric field, the field structure and the 
power flow associated with the wave. 

Basic Theorv 

For cases when the hybrid wave frequency is lower than the 
TM01 cutoff frequency, the theoretical analysis can be greatly 
simplified by employing a quasi-static approximation. This 
requires V x E = 0. The analysis yields the electrokinetic 
modes that exist in the beam. For cases where the upper hybrid 
frequency is equal to or greater than the TM01 cutoff frequency, 
a fully electromagnetic model is necessary. This analysis, both 
linear and non-linear, is presently being undertaken by Seyle#. 

The quasi-static analysis employed here uses the continuity 
equation, the momentum conservation equation, and Poissons’ 
equation to yield a characteristic dispersion relation. 

The linear dispersion relation is derived from matching 
the jump conditions for beam-vacuum boundary and setting 
the wave potential at the wall equal to zero. For all values of 
azimuthal mode number, n, this characteristic equation is 

$(ka)K,(kb) - I,,(kb)K:,(ka) J:, (kl a) 
I,(ka)K,(kb) - I,(kb)K,(ka) = A(“‘k)~,Jkla) + B(w’k) 

where 
(1) 

A(w,k) = 
(w: + 72w; - w,‘)(wZ - w;, 1/Z 

(WV2 - w,“)w,” 

and 

B(w, k) = 
ny2w~w, 

ka(w,2 - wZ)w* 

In addition to these definitions, the perpendicular wavenum- 
ber, kl, is defined as 

kf = kt;;~2-+w~; (yw;) ;; ) 
P b 

To simplify the equations, the Doppler shifted eigenfrequency 
of the modes is defined as Wb = w - kvd - n&. Using the 
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rigid rotor equilibria as an approximate model, the bulk rota- 
tion frequency in the lab frame for a completely unneutralized, 
relativistic beam is given by 

ho = % 
( 

1 f (1 - $)1/Z 
c ) 

The other characteristic frequencies of the system are the vor- 
tex frequency, 

w,” = nf - 2w; = (s-l, - 2Q2 

where the cyclotron frequency and the plasma frequency for 
the system are, 

Using the characteristic equation, known values of injec- 
tion voltage, beam current, guide field and geometry, we can 
calculate the dispersion relationship numerically (Figure 1). 
Since the dispersion relationship produces essentially a straight 
line at the Doppler shifted cyclotron frequency, we may use the 
approximate relation for electric field scaling. 

w N kVd f f--l, (4) 

This is valid for regimes where the vortex frequency is greater 
than the plasma frequency or $/wi 2 3, and also ensures 
beam stability exists. Using the simple dispersion formula, and 
requiring the interaction to occur such that the fast hybrid 
wave has a phase velocity equal to c, we arrive at a simple 
formula for the operating frequency 

Since the relativistic cyclotron frequency, R,, depends directly 
on magnetic field and drift energy, the operating frequency is 
strongly dependent on guide field strength and beam drift ve- 
locity. The beam drift velocity is determined by the prescribed 
beam equilibria. 
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Fig. 1 Dispersion relation calculated for a 487 keV beam at 1.9 
kA in a 3.4 cm diameter guide showing the hybrid modes. 

Accelerating Gradients 

To determine the effectiveness of the hybrid wave acceler- 
ator, a estimate of the achievable electric field gradient using 
the simple dispersion relationship can be made. At the operat- 
ing frequency, the Manley-Rowe relations for the conservation 
of wave energy and conservation of wave momentum are 

wo = Wfaat, = Wslow 
2% 

and kllslow = kllfast + vd 

The slow mode should self trap at lower axial electric field since 
it has smaller relativistic factor in the beam frame than the fast 
mode. The condition for self-trapping is the given by 

E 
k,mc2 

trap = ---&7r - 1) where rr = 747 (I - L%) 

Using the trapping relation and the operating frequency con- 
dition, we can determine the self-trapping field for the slow hy- 
brid mode. In the collective (Raman) regime the self-trapping 
field of this mode sets a limit on the achievable accelerating 

gradient. The resulting trapping formula is derived using these 
basic arguments and is given by 

E trap = ad30 
(2 + P) - 2(I + PI 1’2 

P > 

The coefficient (I is of order 5. For slow space charge waves, it 
has been experimentally measured at N 5. 

We can now determine the most effective use of beam en- 
ergy and guide geometry by finding the greatest electric field 
gradient possible for a given injection energy. This is deter- 
mined by maximizing accelerator action per unit length, 

Jacce,(p) = ?!!$E = omc(1 - p)“’ ( (2 + ~~l-J~~P)1’2 

> 
(71 

The accelerator action per unit length is maximized for p‘$ 
0.555. If we insert this into the self-trapping condition we have 
the linear limit given by 

Etrap = (O.llO)c~cB~ 

The numerical values for a possible 30 GHz device can now be 
calculated using the simple relations (Table 1). 

Wave Power Flow 

If we use the Poynting theorem to calculate the wave power 
flux we can determine the relative magnitude of axial electric 
field for the parametrically grown waves. Substituting for the 
various terms in the power equation we obtain the energy con- 
servation equation for the electrostatic modes 

Diocle Voltage &eV) 
Magnetic Field (kG) 
Trapping Field (MV/m) 
Limiting Current (kA) 
Cyclotron Frequency (GHz) 
Plasma Frequency (GHz) 
Slow Wavelength (cm) 
Wiggler Period (cm) 
Maximum Field (MV/m) 
.ELtxm Power (GW) 

276 
6.19 
93.8 
0.88 
17.3 
9.18 
0.33 
0.50 
123 

Q.241 

487 892 
5.36 4.50 
94.1 89.1 
1.91 4.26 
15.0 12.6 
E% 

0:75 

0.54 10.6 

1.16 
225 432 

31 3.8Q 

Table 1 Calculation of parameters for a 30 GHz accelerator using 
the simple model. 
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;nrn~~~~+;c~lE~~ 
> 

+ v * (+vl v I’) = 0 (8) 

Inserting for the values of the density, velocity, and electric 
field from the linear theory, and integrating over the volume of 
the beam, we derive the net power flow for the waves. 

P total = C(h+zw 
k; 
2 + 

(k: + k:)‘Jd 
(9) 

wb wb 

where C(kla) = m2rocp;(Jf(kla) + $(kla)) 

From the linear dispersion relationship, we calculate the per- 
pendicular wavenumber and a normalized effective velocity 

P.IT (Figure 2) - 

Aff = &total 
mz2w(kzcpo)’ 00) 

For a coupled set of waves excited at the same frequency in the 
lab frame, the root of the ratio of effective velocities measures 
the ratio of the axial electric field. Examination of Figure 2 
shows that the electric field in each mode is roughly equal 
when the fast wave is excited near the light line. This ensures 
that the amplitude limited slow hybrid wave does not severly 
restrict the gradient associated with fast wave. Although this 
may be a manifestation of the quasi-static analysis, if the waves 
are excited below cutoff this approach is probably valid. 

Conclusion 

We have proposed an approach to use a weakly relativistic 
electron beam as a means of collectively accelerating particles 
to ultra-relativistic energies. Using this technique, it seems 
possible to achieve fields in excess of 100 MV/m in a simple 
linear model. The fast hybrid wave seems to be the eigen- 
mode capable of accelerating particles to velocities arbitrarily 
close to speed of light. Given a ‘700 kV, 3 kA particle beam 
as the driver, a 5 meter module could be used to accelerate 
1.0 amp of load particles through 1 GeV if the device could 
transfer 50 percent of its energy to load particles. Since the 
accelerator is a wave driven device, the stage to stage phasing 
of the waves should not present a difficulty. In particular, the 
intrinsic electrostatic focusing of a collective accelerator will 
permit high currents of accelerated protons. Furthermore, the 
use of a smooth wall device with a confining electron beam 
eliminates the problems of wake fields associated with coupled 
cavity linacs. If the accelerating wave potentials can approach 
the beam-wall potential drop of the drive electron beam, axial 
gradients of 200 MV/m may be achieved. As a device for ac- 
celerating high energy electrons, the inherent stability of the 
high current driving electron beam in each stage ensures net 
stability. Alternating the guide magnetic field stage to stage 
may also provide an overall focusing. 

With the recent developments in induction linacs and high 
current cathodes, the technology required to produce the high 
quality particle beam necessary for such a device exists. An 
r.f. accelerator transforms power from a low energy electron 
beam in a klystron and places it in a high energy beam. These 
two beams are separated both in time and space. The Ultralac 
concept uses a low energy drive beam and a high energy load 
beam in the same region of space at the same time. Develop- 
ment of these types of devices provides an interesting option 
for future accelerator design. 

This work was supported by the U.S. D.0.E 
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Fig. 2 Calculation of the normalized effective velocity and the 
perpendicular wavenumber for the example in Fig. 1 
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