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1. SUMMARY AND INTRODUCTION 

The paper identifies conditions which tracking codes should 
meet. The constraints come from mathematics, physics, com- 
puter environment and user requirements. There is no inten- 
tion to do an exhaustive study of existing codes. Only single 
particle tracking codes are considered. When many particles 
are followed they have no interaction with each other. The 
paper ends with comments on present efforts to meet some of 
the conditions identified. 

2. DEFINITION OF THE PROBLEM 

The problem analyzed is the tracking of particles in beam- 
lines and circular machines. The particles have a mass, a 
charge and are subjected to electromagnetic forces. Their mo- 
tion is described with respect to a reference trajectory, within 
the scope of Hamiltonian Mechanics. The purpose of a track- 
ing code is to produce numerical values for the coordinates 
of particles after they have been subjected repeatedly to the 
action of the electromagnetic elements which constitute the 
beam line. The errors affecting these numerical values should 
be small enough to draw meaningful conclusions. The speed of 
modern computers allows tracking through a great number of 
elements. The ease with which these computations are made 
tends to remove the user from the problem of computational 
error accumulation. These errors arise from simplifying as- 
sumptions made in the development of the mathematical model 
describing the physical situation, from the approximation with 
which solutions of the equations of the mathematical model 
are obtained, from the restricted number space on which the 
computers are operating. Sometimes the speed requirement 
entices the user to make assumptions or take shortcuts that 
lead to results which hide the true physical behavior. 

3. THE MATHEMATICAL MODEL 

Let us consider motion in three dimensional space and de- 
note the coordinates by q = (ql, 92, 93). The motion of particles 
can be described by the hamiltonian equations 

. aH . 6’H 
Qi=dpi Pi=-% 

where pi are the conjugate momenta of the variables q;. H is 
the hamiltonian describing the system. 

A point transformation Q = Q(q,p,t) P = P(q,p, t) is 
canonical when there exists a function K(Q,P,t) (new hamilto- 
nian) such that the variables Q, P satisfy the equations: 

. aK . G’K 
Qi=e Pi=-= (2) 

* Work supported in part by the Department of Energy, con- 
tract DE-AC03-76SF00515 and by the National Science and 
Research Council of Canada. 

The functions Q and P satisfy the following conditions: 

[Qit Qj] = 0 [Pimps] = 0 [Q;,Pj] = &j 

where [a,b] is the Poisson bracket of a,6 defined as : 

[a,bl = t: (gg - ~~) j 
Given initial conditions for the variables q, and the momenta 
p;, a solution exists which can be written in the form : 

Qi = Qi(QiOrPi07t) Pi = PE(Qi07PiOrt) (3) 

The transformation, from the initial conditions to the values 
at time t, is a canonical transformation. Thus the functions pi 
and pi satisfy the following relations : 

[Pit qj] = o [Pi, Pj] = 0 [Qi,Pj] = &j 

or explicitly : 

3% aqk 3% aqk _ ---~- 

aqjO dPjO aPjO %jO 1-O 

%‘i aPk -~ - 
aQjO aPjO 

(4) 

3% aPk 3% a?‘k ----- 
aqjO dPjO aPjO aQjO 

= 6;k 

Let us consider the six dimensional vector 

7J = (Q1,Plrq2,P21Q3rP3) 

and the Jacobian of the transformation (3): 

The conditions (4) can be expressed in terms of the matrix M 
as follows : 

MJM’ = J 

Where J is the matrix : 

I -1 0 0 0 0 0 0 0 0 0 0 1 -10 0 0 0 0 0 0 0 0 0 1 -10 0 0 0 0 0 0 0 0 0 1 

(5) 

and Mf is the transpose of M. The condition (5) is called the 
symplectic condition. All solutions to hamiltonian equations 
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must satisfy this condition. Conversely if a transform (3) sat- 
isfies the conditions (5) then there exists locally a hamiltonian 
and a set of associated hamiltonian equations to which (3) is 

a solution. 

Let us now give some examples to illustrate the importance 
of the previous conditions and how they are met in practice. 

A. First Order Solution to the General Equations of Motion. 

We adopt the definition of first order given in Ref. 1. With 
this definition the functions q, and pi are linear functions of the 

initial conditions. The transfer matrix M is constant. Thus 
if matrix M satisfies the symplectic condition it will be sym- 

plectic for all values of the input variables. Because of this 
property, the symplectic condition is always easy to satisfy in 
programs limited to first order. 

B. The Impulse Approximation of Electromagnetic Elements. 

When the transverse motion of a particle within an element 
is very small compared to the average transverse motion in a 
beamline, we may approximate the motion within that element 
and assume that the transverse coordinates of the particle re- 

main unchanged. The Eqs. (3) become: 

rli = Qio Pi = fi(Qj0) + Pi 65) 

Contrary to a common belief, the Eqs. (6) do not generally 
satisfy the symplectic condition. The functions fi must satisfy 
the following relations: 

afi afj -=- 
aqj0 hi0 

(7) 

These conditions are obviously satisfied if each f; is a function 
of the variable q;o only. 

The correct impulse approximation of the electromagnetic 
multipole kicks does satisfy the symplectic condition. Note 
that the variables qi and pi are canonical sets. A program 

whose transforms are symplectic may not represent hamilto- 
nian motion if its variables are not canonical. 

C. Higher Order Approximations. 

Generally the solution (3) is a set of analytic functions 

which can be approximated by polynomials of degree n. The 
terms of the transfer matrix ,lii are polynomials of degree n- 1. 
The left hand side of the condition (5) is of degree 2n - 2; it 
will, usually, be satisfied only to degree n - 1 because the terms 
of degree higher can only cancel with the corresponding terms 
of the matrix M and of the matrix Mt. Thus the truncated 
solution of degree n is symplectic only to degree n. and generally 
is NOT symplectic to all orders. 

H.Thiessen”’ observed that this departure from the sym- 
plectic condition could lead to numerical phenomena which do 

not represent any physical motion. Figure 1, extracted from, 131 

shows such a case where Liouville theorem is clearly violated. 
It is the author’s experience that, to second order, this has 
been observed only in lattices containing dipoles with strong 
quadrupole and sextupole components. The effect disappears 
when one extracts the quadrupole and sextupole components 

from the dipole magnets and replaces them by separate mag- 
nets. 

Figure 1: Transform symplectic to second order. 

D. Symplectification. 

Approximations are inevitable. Does there exist a proce- 
dure to create a transformation which is symplectic to all orders 
and whose truncation to order n coincides with the approxima- 
tion defined in C.? Using the Lie Algebraic approachEtienne 

Forest14’ first developed a procedure which demonstrated that 
the symplectification of the transformation did cure the prob- 
lem observed with standard tracking programs. This feature 

has been introduced in the program MARYLIE15’ and the 

program DIMAT.16] 

Figure 2 shows that after correction for symplecticity there 
is no indication of invariant violation. 

A note of caution here is in order. There are simple, sym- 
plectic transformations which display chaotic behavior. Such 
behavior obviously cannot be removed by the symplectification 
process. Neatness of a phase plot is not a necessary condition 
for symplectic behavior. We shall come back to this point when 
talking about concatenation. 
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Figure 2: Second order transform, symplectic to all order. 

E. Subdivision of Elements. 

The departure of any approximation from the exact solu- 
tion of the equations of motion is an error of some order. The 
obvious simple way to reduce this error is to split the electro- 
magnetic element in subelements and trace the particles suc- 
cessively through the subelements. This is like reducing the 
step size of a differential equation solver to increase accuracy. 
This method also cured the problem displayed in Fig. 1. In 
all cases, the removal of the problem occurs at the expense of 
computing time. 
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4. NUMERICAL SOLUTION 

The equations of motion (1) can be solved by numerical 
procedures like the Rung&Kutta differential equation solvers. 
These procedures are affected by errors due to the order of 
the solver, to the choice of the step size and to the fact that 
the solution provided by the solver is usually not symplectic 
beyond the approximation error. Thus these numerical proce- 
dures can be affected with diseases similar to that of figure 1. 
Some solutions to this problem are: 

u) Find new solvers that are symplectic to all orders. 

b) Find solvers of greater order than the standard RK4-4 
solver. 

c) Reduce the stepsize sufficiently so that the errors lie in 
the range of the round off errors of the computer being 
used. 

A. R. RUTHl” introduced the first symplectic solvers di- 
rectly based on the hamiltonian formalism. 

B. When tracking particles in magnets one does not generally 
need to know the position of particles inside the magnet. There 
exists self starting Runge Kutta solvers that provide very accu- 
rate solutions to the equations of motion with large step sizes 
and with less function calls. They have been successfully used 

at the early stages of the design of the ring EROS. Some of 
these solvers can be found in Ref. 9. 

Fast equation solvers based on perturbation theory of hamil- 

tonian mechanics are being developped by Ruth and Warnock PI 

C. The third approach is similar in nature to the one presented 
in paragraph 3 E. Whatever the solver chosen (the second order 
transport matrix may be considered as a solver of the equations 
of motion) computational errors can always be decreased by 
reducing the stepsize of the computation, until the level of the 
roundoff errors is reached. 

5. COMPUTER LIMITATIONS 

As far as we are concerned the limitations due to the com- 
puter are of three types 

u) The number system used by the compilers. 

b) The memory space available under direct access. 

c) The time to execute the tracking. 

A. The final aim in particle tracking is the obtention of numer- 
ical values for the coordinates of the particles. The ultimate 

precision is bound by the number system used by the compiler, 
it characterizes the roundoff errors. At this level the solutions 
are no longer symplectic and if severe conditions are created 
and the particles are tracked through enough elements, non 
physical effects will be observed. The determination of the 
progression of roundoff errors is a complex problem. One way 
to put it in evidence is to switch to a higher precision structure 
in the computer hardware or software and observe the differ- 
ences. Another way is to track the particles backwards through 
the elements (without doing an exact mathematical inversion). 
The observed differences are a measure of the roundoff errors, 
The above comments show that, no matter what, we are lim- 
ited ultimately by the computer software structure and in the 
final analysis by the amount of time we are willing to spend on 
a given problem. 

B. The memory requirement and the execution time are closely 
linked. Parallel processors are a great help in this respect. An 

imaginative effort is taking place at DESY. 

With the intent to track many particles over a few hundred 

thousand turns around the machine HERA, Wriilich “” has 
suggested to assemble a great number or microprocessors in 
parallel. Each microprocessor will track one particle. The data 

needed by the micros is processed by a mainframe unit. 

C. To save time many users resort to concatenation. Con- 
catenation is the grouping of many elements together and rep- 
resenting them by one transform of some order. For example 
in the second order matrix formalism a subsection of a lattice 
would be represented by a single matrix. In the Lie algebraic 
approach the subsection would be represented by a polynomial 

of some order. This procedure definitely improves the time 
performance but is not devoid of dangers. 

Depending on the problem, concatenation will definitely 
hide some behavior and will alter details of chaotic motion. 
For the detailed analysis of the extraction process from the 
EROS pulse stretcher it was found that no concatenation was 

allowed. ‘r” 

6. MAXWELL’S EQUATIONS REQUIREMENTS 

The fields, through which the particles drift, satisfy Maxwell 
equations.As with the solution to the equations of motion (l), 
the solution to the Maxwell equations can be expressed as a 

polynomial expansion(see Ref. [“’ ). In th e case of a static mag- 
netic field with midplane symmetry defined by the gradient of 
the potential 4 we obtain: 

(P+W~) 
(8) 

+3!+ 
w =’ 

q+(x,y,s) =(AKI + Allz + A12(z2/2!) + An(z3/3!) + . ..)y 

+ (A30 + A31z + A32(z2/2!) + . ..)y3/3! + ... 

= 2 FA xn y2m+l 

m=O n=O 2m+1pnn! (2m + l)! 

A30 = - A’\0 - Al2 - hAll 

A31 = - A’\1 + 2hA’lo + h’A’10 - A13 - hAlz -t h2All 

A32=-A’i~+4hA”ll+2h’Ail- 6h2Avolo - 6hh’AJlo - Al4 

- hAI + 2h2A12 - 2h3All 

A33 = - A”13 + 6hA”lz + 3h’Aiz - 18h’A’il - 18hh’Ail 

+ 24h3A’io + 36h’h’A ‘10 - A15 - hA14 + 3h2An 

- 6h3A12 + 6h4All 

(10) 
The above recursion relations show that when one truncates 

the polynomial expansion to some degree, then Maxwell equa- 

tions are generally verified up to that order only (when the 
curvature is not zero or when the field vary along the longi- 
tudinal dimension). In conclusion the truncation of the field 
expansion creates a representation of the fields which do NOT 
satisfy Maxwell equations. In this case, however, there is no 
simple fix like we had for the symplectic condition. 



The choice of a coordinate system,in which Maxwell equa- 
tions variables separate, provides solutions in the form of a se- 

ries expansion of eigenfunctions. An example of this approach 

is given in Ref. 9. We reproduce the expressions for the static 
magnetic field in a multipole element (not containing a dipole 

term). 

3, = x F-l I-(bnz + A) cos(n - 114 
- (%z + a,) sin(n - l)d] 

B, = 1 rn-’ lb + A) sin(n - 114 

- (a,z + a,) cos(n - l)$ 

B, =xz(-b,cosnb-a,sinn#) 

Equations (11) are expressions for constant or linearly varying 
fields along the longitudinal axis +z. A similar set of equations 
is obtained for fields with a general longitudinal variation (see 
details in Ref. 9). The powers of 7 are replaced by Bessel 
functions and the linear dependence in z by a sum of cosine 
and sine terms. 

In both cases Maxwell equations are satisfied to all orders, 
whatever the truncation point. To economize computer time, a 
multipole can be divided in three parts: a central constant field 
part surrounded by fringing field zones. But,in this process, 
one always creates some discontinuity in the value of the fields 
or of some derivative at the joining surface between the zones. 

One can represent adequately the multipole as one unit but at 
the expense of computing time. The author does not know of 
a similar representation for the fields of a dipole magnet with 
respect to the reference trajectory. 

Another method of representing the fields is with the help 

of a field map. Field values are obtained by interpolation.They 
must be accurate enough so that Maxwell equations are satis- 
fied to the roundoff precision of the machine. 

7. USER REQUIREMENTS 

The user needs more than one program because of the com- 
plexity of the problems at hand. Also the research field is in 
permanent evolution and new ideas need be tested and applied. 
This demands that tracking and design programs have user 
friendly input facilities and be compatible with each other.Last 

year under the inspiration and direction of Carey and Iselin 1131 

a standard input format was introduced and hopefully it will be 

adopted internationally. But that is not enough. All programs 
should not have to go through repeated fitting procedures of 
a preliminary design. A standard data base must be defined 
which existing or future programs can access to perform stud- 

ies of already designed 1attices.J. Niederer and F. C. Iselin [‘41 

are directing efforts in this area. 

8. CONCLUSIONS 

It is the author’s opinion that all tracking and design codes 
meet the following requirements: 

1. Use of standard input format. 

2. Use of canonical variables only and as defined in the stan- 
dard input format. 

3. The symplectic condition to the order of the program is 
satisfied. 

4. Option to guarantee symplecticity to all orders. 
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Correct definition of the electromagnetic fields up to the 
order of the solution of the equations of motion, including 
the fringe fields with their longitudinal components. 

Concatenation is available with a warning of caution. 

Possibility to create or use the standard data base. 

There is not a single tracking code that satisfies all these 
requirements. Within the framework of the design efforts for 
LEP,HERA,SLC,SSC (to name but a few projects) a number of 
researchers are attempting to meet some of these requirements. 

The initial impetus stems from the work of Iselinlns’ at CERN. 
Other programs that follow or will follow the trend set in 

MAD”‘! are: COMFORT,“sl MARYLIE,“’ PATRICIA,llrl 

SYNCH,l”’ DIMAT (in its version DIMAD),@” HARMON,llgl 

TRANSPORT’201 and TURTLE.1211 

The previous list does not pretend to be exhaustive. 

To conclude, the spectre of the need to satisfy the symplec- 
tic condition was a non-issue. There are many, equally valid, 
simple solutions to the problem. Most programs are meeting 
this condition or will do so in the near future. 

Efforts should be concentrated on adequate and practical 
definition of the fringing fields. When all factors of time,space 
and accuracy are considered, the best approach will probably 
be the direct solution of the differential equations of motion 

with new fast solvers. The most difficult problem at present, is 
the simple and practical definition and representation of fring- 

ing fields in dipole magnets. 
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