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Summary 

The Courant-Snyder parametrization for 
one-dimensional linear motion in periodic sys- 
tems is generalized to two-dimensional coupled 
linear motions. The lo-parameter 4x4 symplec- 
tic transfer matrix across a period is ex- 
pressed in two normal-mode invariant phase- 
advances 
function:, 

four normal-mode periodic "amplitude" 
and four periodic functions which 

reflect the strength and structure of the 
coupling. These parametric functions are also 
given by differential equations containing the 
periodic force coefficients appearing in the 
Hamiltonian. Two bilinear invariants can be 
constructed. With given horizontal and verti- 
cal aperture limitations, these invariants 
give the four-dimensional phase-space accept- 
ance volume and the propagation of the hori- 
zontal anti vertical emittances of the beam. 

Introduction 

Gver a year ago, as the ?JAL main acceler- 
ator was being brought into operation, it was 
clear that a substantial coupling existed 
between radial and vertical betatron oscilla- 
tions. Last summer, it became importart to 
take steps to compensate the coupling, for 
not only was the interpretation of low-field 
betatron oscillation phenomena obscured by 
the interplay between these two degrees of 
freedom but also a serious degradation of the 
vertical emittance of the extracted beam could 
be anticipated. We were thus led to a reexam- 
ination cf two-dimensional linear coupling. 
=it the same time, a parallel experimental 
effort was initiated to reduce the coupling 
effects. By the end of summer, a combination 
of trim skew quadrupolcs and main quadrupole 
rotations had reduced the coupling effects to 
prc:>or?ions tolerable for the present. The 
pressure of other more critical matters caused 
I'q 5-n 15.1' ,sij, cur tr?ai+ment of t.he iinrar _L 
ccupling problem, at the point where a formal 
solution had been found in a fashion which is 
an e:ctcr,:;io:; of the familiar Ccurant and 
En>-dcr' for::iulation of the one-dimensional 
case. Kc prosent that formal sclution below, 
1 r, -*.y-; ; c :r. .,*. '2 intrcduce periodic parameters, in 
.xdd:ticr. to those of Courant and Snyder, to 
refli..ct th; coupling forces. ;rlhat is lacking , a,t t.-iLS stage is an intuitive appreciation of 
the siqnificanca ci these additional pard~- 
eters: akin to tl-.at whit:? h&s been developcld 
fCZ the Ccurant-Snyder z's and 1's over the 
;;3:j t iiftc,.:n years or so. 

Kotdtion 

IA;,, ii'- ,.ii-i. +LTLLI.-LII*A., vonr xc.;n+ i np -j-r,~~~~, letters prc:ced- 
1.lg "o" in the alphabet will be used for 2x2 
mutr;cos and letter:; after "I>" will be ul;rd 

- 
*C:;;.rat,:d by I-niver:;iti,_,s - &~sciarch h:;socicltl.on 
i r. c . unritr contr<:ct with the United Stat<::; 
~~~.t~;;i:~c Energy Comn;ission. 

for 4x4 matrices and 4-element column vectors. 
Three exceptions to this rule will be made: 
the identify matrix is I regardless of size, 
the 4x4 Hamiltonian matrix will be denote by 
H, and since the context will always prevent 
misunderstanding, S will stand for either the 
2x2 or 4x4 version of the unit symplectic 
matrix 

s= 0100 

-1 0 0 0 

i i 

0 0 0 1 (1) 

0 0-i. 0 

A "prime" will imply differentiation with rcs- 
pect to the independent variable z. The 
transpose of a matrix A is A, the trace is 
TrA, and the determinant is /A/. 

Statement of the Problem 

We consider a two-dimensional system des- 
cribed by the Hamiltcnian 

(2) 

where x and y are orthogonal coordinates, 5:x 
and p, 
3, an?l 

are their conjugate momenta, and L, P, 
G are periodic in z with a period of 

C. This form of the Hamiltonian may describe 
coupled betatron oscillations in a synchro- 
tron, in which case I< and L would arose from 
skew quadrupole and solenoidal fields, res- 
pectively. However, any bilinear Hamiltor.ian 
can be brought to this form b;i a suitable 
canonical transformation. 

In matrix r,otation, (2) is 

(3) L 

with 

F 0 ;q - L 

i 01 LO, 

K L G 0 \Gi 

- I‘ 0 Gi 

The canonical equation:; ;r;iy kc writteE 

9' = QX 

whcr:> 

f';) 

,> 7 'jp = /n 1 T, O\ (61 

and 3 1.5 t::c r,dtrix d(.,ZlnC.,d in i:; . 
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We will find a canonical transformation 
R to new coordinates V of the form 

VE u 

i\ 

= R-lx 

pu 
V 

\ i pv 

(7) 

such that the motions described by u and v are 
decoupled; solutions for each can then be 
written in Courant-Snyder phase-amplitude form 
containing periodic parameters analogous to 
their 6's and u's. The transformation R will 
contain additional periodic parameters, re- 
flecting the coupling terms in the Hamilton- 
ian. The periodic parameters will be related 
to the single-turn matrix in a fasion similar 
to the one-dimensional case. Thus, we will 
have obtained a formal solution to the system 
(5). We will then exhibit two bilinear invar- 
iants satisfied by V, and so, through R, by X 
as well. 

Selection of Parameters 

A 2nx2n matrix T which satisfies the con- 
dition 

TST = s (8) 

where S is the 2nx2n generalization of (1) is 
called "symplectic." The Jacobian matrix of 
a canonical transformation has this property.2 
Ear linear systems, the transfer matrix 
T(z2,zl) relating the state of the motion at 
22 to that at zl according to 

X(z2) = T(z2,z1)X(zl) (9) 

is given by the Jacobian matrix of the canon- 
ical transformation from X(21) to X(22). 
T(z2,zl) is therefore symplectic. The condi- 
tion (8) gives n(Zn-1) relations among the 
(2n)' elements of T, so the number of indepen- 
dent parameters is n(2n+l). In the case of 
two-dimensional motion, T will have 10 inde- 
pendent elements insofar as algebraic rela- 
tic,nships are concerned. 

For our periodic system, the "single-turn" 
kL';-..fer ,:,atri;\: defLile(j bi' 

T(z) E T(z+C,z) (10) 

is also periodic. So T(z) can be expressed in 
terms of 10 periodic parameters, and this we 
will proceed to do. 

Teng has presented a variety of ways in 
which symplectic matrices can be parametrized 
SC that only quantities that are independent 
after taking the symplectic condition into 
i;ccount appear.3 We will use his "symplectic 
rctaticn" form, which fcr two-dimensional 
motion is 

T(zj = Ica,s$ -D -1 5 CPlQ 

DL ci;,: ICc4': 

or 

T(z) = R"H-'. 

(11 

(12 

In (ll), A, B, and D are 2x2 unimodular 
(symplectic) matrices each of which requires 
3 parameters; the tenth is the angle $. Equa- 
tion (12) serves as the definition of the 4x4 
matrices R and U by association with (11). 
The notation of (12) anticipates the result 
that the matrix R therein will be used for the 
matrix of the same name in (7). 

Replacing X by RV in (9) shows that U(z) 
is the single-turn matrix for V. It is natu- 
ral then to parametrize the constituents of 
U--that is, A and B--in Courant-Snyder form: 

A = Ico4)-1~ + J+l;il; Jl f 

(13) 
B = Ico>~~ + J2Ainp2; J2 f e2 

The phase advances 21 and 32 relate in the 
usual way to the eigenvalues of A and B; since 
T and U are related by a similarity transfor- 
mation, T and U have the same eigenvalues. 

Equation (13) specifies 6 of the periodic 
parameters, and the rest are p and 3 describ- 
ing the unimodular matrix D. The expressions 
below in which the elements of D appear are 
not significantly simplified by writing D in 
terms of 3 independent quantities so we will 
take 

D= /a b\ (14) 
\c d/ 

bearing in mind that ad-bc = 1. 

The parameters may be found in terms of 
the elements of T(z) by inversion of (11). 
Define 2x2 matrices M, m, N, and n by 

(15) 

Then (11) becomes 

M = Aco4=@ + D-%,~iv& 

N=Bc~~~Q+DAD , -Lir2* 
(16) 

m = -(DA-B~)~~KQ ~~44 

n= - (AD-'-D-lB)s in$co4$ 

After some maLY LLix manipulatiGns which need nGt 
be detailed here, we have 

cu:p 1-'"3p 2 = ?j Tr(M-N) 

cu!2,t = LiTr(M-N) 
cui ul-ca p2 

_- 
D=- m + SnS 

(cu5ul-co3p2j 3 ~112,; 

A = M-D -1 m tail+; B = N+Dn tatit 



where 'use has been made of the symplectic 
character of A, B, and D. In arriving at 
(17), an ambiguity in sign has been removed 

by restricting : to the range -~~/4i:sr/4. A 
relative sign between 3 and )ii:2~$ remains to 
be specified. ?ursuing the resemblance 
between (11) and an ordinary rotation of 
coordinates, we will fix the sign of 5ir,2$ by 
requiring that the trace of D be nonnegative. 

Now we can show that use of R, as defined 
in (11) and (12), in the transformation frcm 
X :o V according to X = RV, produces the 
desired decoupling of u and v. Transformation 
of the canonical equation (5) yields 

V' = PV; PGR-lCR-R . -lR' (18) 

But we are in a position to exhibit P. From 
(17)r we know the elements of R in terms of 
those of T. R', through (17), is known in 
terms of T', which is given by 

T' = QT-TQ E [Q,T]. (19) 

The result is 

AI Y = $(aTd)L - ?jbK 

a' = c+bF - {[a(a+d)-2]5-abx] C3At2tk 

b' = d-a - {b(a+d)L-b*K: cU2$ (22) 

c’ = -aG+dF - {~(a-d)L-(l+ad)K! cg.t2; 

d' = -c-bG - {[d(aid)-2]L-bdKjcJt2.2 

The derivatives of the elements of I; are 
obtained from U' = [P,Ul: 

ai = ->l+BlF + (bL'il-aKtl+cL131).tccil:i 

3; = -2cL1 + [(a-d) LOl+bK~l-2bL"l],t;ci:,C 

6 = 2F'11 + [-2aKir1+2cLr l+(a-d)L~l+bK+ ta~$ 

tci ;= -t2+B2G - [bL-f2+cLe2 -dKS2].tal;sj (233 

3; = -2Ci2 + [(a-d)L32-bKB2-2bLa2]~un~ 

G = ~GY,~ - [2cLo,2-2dKn2+(a-d)L','2-bKi'2].tar:,$ 

P= l-blhang cl 0 

$[(a-d)L+bK],tao:@ 0 0 
/ 

0 $[(a-d)L-bK],tc~$ l+bLtai:O !20) 

0 -G+(cL-dK) tan$ +[(d-a)L+bK].;cll$ 

Thus ? is diagonal in 2x2 m,atrices; u and v 
are "normal" coordinates. 

We note in passing that, in terms of our 
parametrization, a generating function for 
the canonical transformation from X to V is 

W(X,Y,Pu,Pv,Z) = 
1 

l+bc>in'$ 

(-i,, i ,I? ,iY; 
(21) 

r__ - c-.! ii^,$ c ,J_ 5 +y + rfj4 .if ,!2 $y2 

+ ,L i-! J 38 xp u + ;aU+ipv - dni~~~ypu 

+ cCJ,s;ypv - bd,! i,+ + bd .ct;,p cc 3 Qp,pv 

+ dbi iii”+ 
1 

We will net nake explicit use of (21) in the 
seq,dtl. 

Differential Equations Satisfied 
by the Periodic Param<:tcrs 

The dynamics of the system imposes dif- 
ferential rciationships among tne periodic 
param<dtcr:3 ; we list them here. The rlrri vn- 
tives of the parameters of R were found in 
the steps leading to the expression for the 
P matrix (20) . They are 

Solution of the Equations of Motion 

Hamilton's canonical equations for the 
transformed variables are 

V' = PV (24) 

with P given by (20). Since one has a very 
good idea how the solutions 
is easy to sclve. 
equations of the preceding section, one may 
verify that 

U h _ = (W,E,) 'u5$l 

w 
P"=-j$ 

( 1 

l.> 
[A in,y +t‘* CL1 AIL 1 1 1 ] 

v = (W2is2j 2cc::,;2 

i., 
[S /ril;,+'Y2iCC5';21 L 

are solutions provided that we define 

'1, = ! (l-bL.tai:,b) 
'!, 

dz- : 1 

+J2 = . 
’ ( l+bL cail,;j 
I- 

dz- : 

"2 2 

(25) 

126) 
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As usual, the four quantities Wl, W2, 61, and 
52 are the "constants of integration." In 
particular, Wl and W2 are the bilinear invar- 
iants 

w1 = vs 
W2 (27) 

as may be seen by eliminating $1 and $2 
between the appropriate pairs in (25). 

The matrix U(22,21), which conveys V from 
Zl to 22, when expressed in the periodic param- 
eters is precisely of the form that we would 
expect from Courant and Snyder. We need not 
reproduce it here. The phases between zl and 
Z2r of course, must be consistent with (26), 
i.e. 

Qi(Z2’Z1) = Qi(Z2) - ‘gQZ1) ; i = 1,2. (28) 

Finally, the matrix T(z2,z1) defined by (9) is 

T(z2,z1) = R(z2)Ub2,z1)R -l (z,) . (29) 

With (29), we conclude the formal solution of 
the problem. 

Comments on the Invariants 

The two bilinear invariants (27), when 
transformed to x,y coordinates, are 

w1 R-lX; W; = j;,R R-lx 

(30) 

A particle projected with given initial condi- 
tions X, hence particular values of Wl and W2-- 
El and E2 say--will move on a 2-surface 
characterized by Wl = El and W2 = E2. Neither 
W1 = El nor W2 = E2 individually describes 
a bounded region in 4-space, since two of the 
eigenvalces of each form are zero. Provided 
the motion is stable--i.e., if ~1 and ~2 are 
real, it is easy to show that the other two 
eigenvalues of each invariant form are posi- 
tive. 

In contrast to the one-dimensional case, 
the projection of the motion at fixed z onto 
either the x, x' plane or the y, y' plane is 
r,ot in jciitral ari ellipse. As an example, 
ccnsider the projection onto x, x'. Using 
sclutions of the form (25) and the transforma- 
tion R, we have 

+ 3i 
x = (w,8$ cir.5bca~~~~ + d(W2fi2) ,s.c~@cc,~$~ 

+ % (31) 
~04~4in~l - a din@nitz+2 

where, to simplify the algebra, we have taken 
"1 = u2 =b=c=O. (It is not hard to find 
systems for which these four parameters vanish 
at some z, but space does not permit us to go 
into detail on this point.) At fixed z, the 
maximum in x' for each x will occur when :$l 
and $2 are related by 

lar:$ a*1 
2 = a-- xanql* 2 

(32) 

In terms of $1, the boundary of the motion in 
the x, x' plane is then 

si x = (W,B,) co5~cod~l 

4 d' B2tan$ 

[(a31hin$l)2 + (dB2c0,~$l)214 
I 

(33) 
CO4J~5AIZdJ~ 

si a'Bltan$ 

[(aE,nib~d~,) ' + (d(32cas$l)21 

If 0 = 0, (33) reduces to the familiar form. 
However, for non-zero 9, the coupling terms 
result in a deformation of the ellipse. 

1. 

2. 

? 3. 
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