© 1973 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |IEEE.

PARAMETRIZATION OF LINEAR COUPLED MOTION
IN PERIODIC SYSTEMS

D. A. Edwards and L. C. Teng
National Accelerator Laboratory*
Illinois

Batavia,

Summary

The Courant-Snyder parametrization for
one-dimensioral linear motion in pericdic sys-
tems is generalized tc two-dimensional coupled
linear motions. The lO-parameter 4x4 symplec-
tic transfer matrix across a period is ex-
pressed in two normal-mode invariant phase-
advances, four normal-mode periodic ' amplltude
functions, and four periodic functions which
reflect the strength and structure of the
coupling. These parametric functions are also
given by differential equations containing the
periodic force coefficients appearing in the
Hamiltonian. Two bilinear invariants can be
constructed. With given horizontal and verti-
cal aperture limitations, these invariants
give the four-dimensional phase-space accept-
ance volume and the propagation of the hori-
zontal and vertical emittances of the beam.

Introduction

Over a year ago, as the NAL main acceler-
ator was being brought into cperation, it was
clear that a substantial coupling existed
petween radial and vertical betatron oscilla-
—ions. Last summer, i1t became important to
take steps to compensate the coupling, for
not only was the interpretation cof low-field
kEetatron oscillation phenomena obscured by
+he interplay between these two degrees of
freedom but also a sericus degradation of the
vertical emittance of the extracted beam could
ke anticipated. We were thus led to a reexam-
ination cf two-dimensional linear coupling.

At the same time, a parallel experimental
«ffort was initiated to reduce the coupling
effects. By the end of summer, a combination
of trim skew guadrupoles and main gquadrupole
rotations had reduced the coupling effects to
propor+ions tolerable for the present. The
pressure of other more critical matters caused
to lay aside cur treatment of the linear
coupling problem, at the point where a formal

e

solution had been found in a fashion which is
an extcnsion cf the familiar Ccurant and
gnvder! formulation of the one-dimensional
case. We present that formal scluticon below,
in which we intrcduce periodic parameters, in
edditicon to those of Courant and Snyder, to
reflc ut the coupling forces. What is lacking
at this stage is an intultive appreciation of
the significance ¢f these additicnal param-
et akin to that which has been developed
for the Ccurant-Snyder 2's and u's over the
rast fiftceen years or so.
Notation

When ravs, letters preced-
ing "o" in tho algh abct will be used for 2x2
matrices and letters after "o" will be used
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for 4x4 matrices and 4-element column vectors.
Three exceptions to this rule will be made:
the identify matrix is I regardless of size,
the 4x4 Hamiltonian matrix will be denote by
H, and since the context will always prevent
misunderstanding, S will stand for either the
2%x2 or 4x4 version of the unit symplectic
matrix

S = o 1 S = 0 1 0 @
-1 0 -1 0 0 0
(L)
0 0 0 1
0 0 -1 ©

A "prime" will imply differentiation with res-
pect to the independent variable z. The
transpose of a matrix A is A tne trace is
TrA, and the determinant is

Statement of the Problem

We consider a two-dimensional system des-
cribed by the Hamiltcnian
H (2}

1 2 2 1 2 s 2
3o P ) +L(p yop x)+5Fx +Rxy+5Gy

where x and y are orthogonal coordinates, oy
r,

and py are their conjugate momenta, and L,
X, ané G are periodic in z w1th a period of
C. This form of the Hamiltonian may descrike

cocupled betatron oscillations in a synchro-
tron, in which case K and L would arise from
skew guadrupole and soleroidal fields, res-
pectively. However, any bilinear Hamiltcnian
can be brought to this form by a sultable
canonical transformation.

In matrix notation, (2) is
H = % (3)
with
Xz fx \; sz [F 0 X —L—\
Px 6 1 L O i o
v K L © 0/ e
ol -L 0 0 1
ey
The canonical cqguations may be written
X' = QX rs)
where
o=su = {0 1 T a\ (6)
/—F 0 K L\
-L. 0 ¢ 1
-k -L -G 90
and € is thne matrix defined in (1.



We will find a canonical transformation
R to new coordinates V of the form
v = ful = rx
Py
(7)

v
PV

such that the motions described by u and v are
decoupled; solutions for each can then be
written in Courant-Snyder phase-amplitude form
containing periodic parameters analogous to
their 8's and a's. The transformation R will
ceontain additional periodic parameters, re-—
flecting the coupling terms in the Hamilton-
ian. The periodic parameters will be related
to the single—-turn matrix in a fasion similar
to the one-dimensional case. Thus, we will
have obtained a formal solution to the system
(5). We will then exhibit two bilinear invar-
iants satisfied by V, and so, through R, by X
as well.

Selection of Parameters

A 2nx2n matrix T which satisfies the con-

dition

TST = S (8)
where S is the 2nx2n generalization of (1) is
called "symplectic." The Jacobian matrix of
a canonical transformation has this property.
Por linear systems, the transfer matrix
T(zp,z1) relating the state of the motion at
zp to that at z] according to

2

X(z2) = T(zz,zl)X(z ) (9)

1
is given by the Jacobian matrix of the canon-
ical transformation from X(z31) to X{(z3).
T(z5,2]1) is therefore symplectic. The condi-
ticn (8) gives n(2n-1) relations among the
(2n)?* elements of T, so the number of indepen-
dent parameters is n(2n+l). In the case of
two-dimensional motion, T will have 10 inde-
pendent elements insofar as algebraic rela-
ticnships are concerned.

our periodic system, the "single-turn"
matrix defined by
T(z+C,z) {10)
is also periodic. So T(z) can be expressed in
terms of 10 periodic parameters, and this we
will proceed to do.

Teng has presented a variety of ways in
which symplectic matrices can be parametrized
sc that only quantities that are independent
after taking the symplectic condition into
account appear.’ We will use his "symplectic
rotation" form, which fcr two-dimensional
moction 1is

T(z) ={ Icoss D_léin¢ A 0Y[Icess -D—lsin¢
-Ds(ngy  Loedsy 0 Bf Dsitng Icose
(1L
or
T(z) = RUR L. (12)
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In (11), A, B, and D are 2x2 unimodular
(symplectic) matrices each of which requires

3 parameters; the tenth is the angle $. Equa-
tion (12) serves as the definition of the 4x4
matrices R and U by association with (11).

The notation of (12) anticipates the result
that the matrix R therein will be used for the
matrix of the same name in (7).

Replacing X by RV in (9) shows that U(z)
is the single-turn matrix for V. It is natu-
ral then to parametrize the constituents of
U--that is, A and B--in Courant-Snyder form:

A = Icoéul + Jléinul; Jl = al Bl
T T
(13)
= . 54 : = R
B Ic05p2 + J25Lnu2, J2 az £,
“Y2 T2
The phase advances uj and 2 relate in the
usual way to the eigenvalues of A and B; since

T and U are related by a similarity transfor-
mation, T and U have the same eigenvalues.

Equation (13) specifies 6 of the periodic
parameters, and the rest are ¢ and 3 describ-
ing the unimodular matrix D. The expressions
below in which the elements of D appear are
not significantly simplified by writing D in
terms of 3 independent quantities so we will
take

L

bearing in mind that ad-bc = 1.

(14)

The parameters may be found in terms of
the elements of T(z) by inversicn of (11).

Define 2x2 matrices M, m, N, and n by
T = (M n) . (15)
m N
Then (11) becomes
M = Acos?d + D'lBD¢4n2¢
N = Beos?¢ + pap tsin2g
(16)
m = ~(DA-BD)&Ang cusd
n = -(AD_l—D-lB)sia¢cos¢

After some matrix manipulaticns which need nct
be detailed here, we have

s .
! ]
Cotu -eosp, = S oTr(M-N) {1 + ZiE;iEEjEE%
1 27 2 e ) ]?
(27 (o)
= _HTr (M-N)

cos2¢ cosuy-eosy,

—
[
-J

_ m + Sns
(cuéul—cuauz)A(HZQ

D =

M—D_lm tandg; B = N+Dn fanp



where use has been made of the symplectic
character of A, B, and D. In arriving at
{(17), an ambiguity in sign has been removed
by restricting ¢ to the range -w/4s¢sn/4. A
relative sign between D and $4{n2¢ remains to
be specified. ?Pursuing the resemblance
between (11) and an ordinary rotation of
coordinates, we will fix the sign of 44(n2¢ by
requiring that the trace of D be nonnegative.

Now we can show that use of R,
in (11) and (12), in the transformation frcm
X to V according to X RV, produces the

1
EbK

' = o+bF - {[a(a+d)-2]L-abK} cct2¢

%(afd)L -

b' = d-a - {b(a+d)L-b?K: coil¢ (22)
¢' = -aG+dF - {c(a+d)L-{1+ad)K} cot2s;
d' = -¢c-bG ~ {[d(a+d)-2]L-bdK}cut2¢

as defined

The derivatives of the elements of U are

desired decoupling of u and v. Transformation obtained from g' = [pP,U]:
of the canonical equation (5) yields
1 -~
_ _ a, = —-v,+B.F + (bLy,-aKpg,+cLB,) tang
V' = PV; p = R 'or - RIR". (18) ' 1 L
si = -20y + [(a-d) LB, +bKg ;- 2bLa, ] tany
But we are in a position tc exhibit P. From \
(17), we know the elements of R in terms of Yy = 2Fal + {—ZaKal+2cLal+(a—d)Lyl+be1]tan¢
those of T. R', through (17), is known in \ -
terms of T', which is given by 2y = —y2+BZG - [bLyo+cL62-dK82]tan¢ (23)
P . -
T¢ = QT-TQ = [Q,T]. (19) 3, = -2&2 + [(a—d)L82~bK52—2bLu2]tanQ
1
vyl = 2G6a, - [2cLo,-2dKa,+(a-d)Ly,~bKy,ltan¢
The result is 2 2 2 2 2 2 ’
p = —%[(a—d)L+bK]tan¢ 1-bLtand 0 0
-F- (cL-aK) tang %[(a~d)L+bK]tan¢ 0 0
(
0 0 Tl (a-d) L-bK] tans 1+bLtans (20)
0 0 -G+ (cL-dK) tand T0(a-a) L+bK] tans

Thus P is diagonal in 2x2 matrices; u and v
are "normal" coordinates.

We note in passing that, in terms of our

parametrization, a generating function for
the canonical transformation from X to V is

1

W(x,y,p /P,s2) = ———
uv 1+becsin ¢

J;acéinzﬁ
L

+ asdingx - dAAadiphy
u 2Py TPy
SCSGYP T bdsialdp

not make explicit use of

2 .
+ bslnpcosi
u b LhyCCSyPupv

abs {n*®ip?
v

We will (21) 1in the

segquel.

Differential Eguations Satisfied
by the Pericdic Paramcters

s

The dynamics of the system imposes dif-
ferential relationships among tne periodic
parameters; we list them here. The deriva-
tives of the parameters of R were found in
the steps leading to the expression for the
P matrix {(20). They are

Solution of the Equations of Motion

Hamilton's canonical equations for the
transformed variables are

v' = PV (24)

Since one has a very
(24)

with P given by (20).
good idea how the solutions should lock,
is easy to sclve. Using the differential
equations of the preceding section, one may
verify that

1
u (wlﬁl)zcuswl
W, \%
Py = - EI [Atnwl+alduswl]
(25)
v o= (sz2)2c05¢2
p, = = Eg Y[&inw +i L CCEy ]
v B TRRR2T 2R Y2
2
are sclutions provided that we define
_ (1-bLtand) .. _.
¥y = J 7 dz=°y
" {26}
[ BLEd )
0 f (l+D?thy) Azt
2 J £y 2
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As usual, the four gquantities Wi, W2, &1, and
§5 are the "constants of integration.” 1In
particular, Wi and Wy are the bilinear invar-

iants
= VS \ = Vs |
Wl Vs Jl 0) W2 Vs (O 0 \%
0 0 0 J,
as may be seen by eliminating ¥3 and Y3
between the appropriate pairs in (25).

A\
(27)

The matrix U(z2,z1), which conveys V from
z] to z3, when expressed in the periodic param-
eters is precisely of the form that we would
expect from Courant and Snyder. We need not
reproduce it here. The phases between z] and

z3, of course, must be consistent with (26),
i.e.
-\pi(zz,zl) = wi(zz) - -Li(zl); i=1,2. (28)

Finally, the matrix T(ZZ’Zl) defined by (9) is

T(z,,2)) = R(z,)U(z,,2,)K T(z)) (29)

With (29), we conclude the formal soluticn of
the problemn.

Comments on the Invariants

The two bilinear invariants (27), when
transformed to x,y coordinates, are
(3 O) 0 0
I At Sl o oaz ( )—1
Wl = KSR (0 0 R TX; W2 = XS8R 0o J R X

(30)

A particle projected with given initial condi-
tions X, hence particular values of Wy and Wp—-
E1] and Ep say--will move on a 2-surface
characterized by Wi = E] and Wp = Ep. Neither
W1 = E; nor Wp = Ep individually describes

a bounded region in 4-space, since two of the
eigenvalues of each form are zero. Provided
the motion is stable--i.e., if u] and up are
real, it is easy to show that the other two
eigenvalues of each invariant form are posi-
tive.

In contrast to the one-dimensional case,
the projection of the motion at fixed z onto
either the x, x' plane or the y, y' plane is
not in general an ellipse. As an example,
censider the projection onto x, x'. Using
sclutions of the form (25) and the transforma-
tion R, we have
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X (WlBl)%co¢¢coawl + d(wzﬁz)%ain¢ccaw2
' W\ , Wo\% (31)
x' = —Q;ﬂ cod¢é¢nwl - a<§;) 44n¢4&nw2

where, to simplify the algebra, we have taken
o] = a2 = b =oc= 0. (It is not hard to find
systems for which these four parameters vanish
at some z, but space does not permit us to go

into detail on this point.) At fixed z, the
maximum in x' for each x will occur when Y3
and Y are related by
aBl
tany, = == tany,. (32)
2 d82 1

In terms of Y3, the boundary of the motion in
the x, x' plane is then

x = (WlBl QOéyQUéUl
WZBZ 5 d‘than¢
W >
; 2 2
171 [(a3154nwl) + (d82coawl) ]
Wl 5 (33)
x' = =1 cosdsiny
B 1
1
WA B 5 a’g,tand
2P1 1
+
WiB)  [(ag.sinp. )’ + (dBcosp,)?]?
1 1 2 1
If ¢ = 0, (33) reduces to the familiar form.
However, for non-zero $, the coupling terms

result in a deformation of the ellipse.
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