Development of a ¹⁹Ne Source: in Search of Chirality Flipping Interactions

presented by Noah Hoppis

September 2019

Chirality flipping, Fierz interference, and the Neon-19 β decay spectra

Chirality flipping, Fierz interference, and the Neon-19 β decay spectra

2. An Overview of the Source

The target cell and a method for rapid and continuous Neon extraction

Chirality flipping, Fierz interference, and the Neon-19 β decay spectra

2. An Overview of the Source

The target cell and a method for rapid and continuous Neon extraction

3. State of the Source

Current progress towards Neon-19 production

Chirality flipping, Fierz interference, and the Neon-19 β decay spectra

2. An Overview of the Source

The target cell and a method for rapid and continuous Neon extraction

3. State of the Source

Current progress towards Neon-19 production

4. Future Work

Check for chirality flipping!

Check for chirality flipping!

Precision test of the Standard Model

Check for chirality flipping!

- Precision test of the Standard Model
- Chirality flipping interactions appear as Fierz interference in β decay energy spectra

Check for chirality flipping!

- Precision test of the Standard Model
- Chirality flipping interactions appear as Fierz interference in β decay energy spectra

Tricky to measure

Check for chirality flipping!

- Precision test of the Standard Model
- Chirality flipping interactions appear as Fierz interference in β decay energy spectra

Tricky to measure

Solution: measure $-\beta$ and $+\beta$ decay

An Overview of the Source

An Overview of the Source

¹⁹F(p,n)¹⁹Ne

19F(p,n)19Ne Cross Section vs Energy (TENDL2017)

An Overview of the Source

Source Block Diagram

CENPA

The Tandem

18 MeV proton max.

Model FN tandem VDG, pelletron charging

An Overview of the Source

Gas target

Gas target

3 atm target pressure

Gas target

3 atm target pressure

Aluminium construction

Gas target

3 atm target pressure

Aluminium construction

Limited activation

Gas target

3 atm target pressure

Aluminium construction

- Limited activation
- Fluorine resistant

Gas target

3 atm target pressure

Aluminium construction

- Limited activation
- Fluorine resistant

6 mm diameter, 50 μm aluminium window

Gas target

3 atm target pressure

Aluminium construction

- Limited activation
- Fluorine resistant
- 6 mm diameter, 50 μ m aluminium window
 - 11.6 atm mechanical burst strength

¹⁹Ne + SF_e

Gas target

3 atm target pressure

Aluminium construction

- Limited activation
- Fluorine resistant

6 mm diameter, 50 μ m aluminium window

- 11.6 atm mechanical burst strength
- 108 K temp rise for 10 MeV 10 μA 2 mm beam

LN₂ cooled traps

LN₂ cooled traps

designed to withstand 33 atm

LN₂ cooled traps

- designed to withstand 33 atm
- 2 L volume

LN₂ cooled traps

- designed to withstand 33 atm
- 2 L volume

12 hr cycle time

State of the Source

Traps not overwhelmed by gas flow

- Traps not overwhelmed by gas flow
- System leak tight

- Traps not overwhelmed by gas flow
- System leak tight
- Purification cycle works

- Traps not overwhelmed by gas flow
- System leak tight
- Purification cycle works

No beam yet!

- Traps not overwhelmed by gas flow
- System leak tight
- Purification cycle works

No beam yet!

Tandem reconfiguration and ion source troubles

Future Work

1. Finish tandem reconfiguration and ion source rebuild

- 1. Finish tandem reconfiguration and ion source rebuild
- 2. Measure Neon-19 production rates

- 1. Finish tandem reconfiguration and ion source rebuild
- 2. Measure Neon-19 production rates
- 3. Automate system to permit remote operation

