Beam Dynamics Measurements with New Generation BPMs

Boris Podobedov

September 4, 2019

North American Particle Accelerator Conference: 1-6 September 2019 NAPAC2019

Outline

- NSLS-II BPMs
- BPM signal processing enhancements to enable sensitive beam dynamics measurements
- Measurement examples
- Summary

All measurement examples are from NSLS-II

Motivation

- Beam dynamics is rich and exciting subject.
- Understanding collective and nonlinear single-particle dynamics and, increasingly, their interplay, is crucial for stably running an advanced light source, as well as other accelerators.
- Sophisticated measurements are needed to confirm and refine machine models.
- Some of these measurements must be done at low current, nonstandard fill patterns and without feedbacks. Machine stability as well as diagnostics capabilities in these regimes often present severe limitations.
- New ideas to overcome these limitations are often needed.

NSLS-II BPMs: Pickups

- NSLS-II: 30 cell DBA 3 GeV ring with 1 nm / 8 pm design emittances, smallest beam size 3 μm rms (y)
- Beam stability of paramount importance for users
- NSLS-II is equipped with a large number of highperformance BPMs (~240 at present)

RF BPM Types	Quantity
Multi-Pole Chamber BPMs (LA)	6 per cell
<u>L</u> arge <u>A</u> perture (25 mm vert.)	180 Total
Insertion Device (ID) Chamber BPMs (<u>SA</u>)	2-4 per ID
<u>S</u> mall <u>A</u> perture (8-11.5 mm vert.)	straight
	~30 Total (now)
Special BPMs (injection, BxB fdbk, test,)	~10

Real SA button assemblies are rotated around the vertical

BROOKHAVE

NSLS-II RF BPM Electronics In-house Development

RFBPM Design(2009-2010)

Established BPM Performance Requirements for Injector, Storage Ring

RFBPM Hardware Requirements(2009-2011)

- Architecture (AFE/DFE)
- FOFB/PS, Timing and EPICS interface
- FPGA selection adequate for calculations and signal processing
- Interface to Controls System Platform
- Software/firmware requirements
- · Provision for adequate control of all required parameters
- Meet SR performance requirements
- Meet Long term stability requirements
- Adequately addresses maintainability and reliability
- Development of X-Ray BPM application
- Flexibility to meet future needs

RFBPM Design and Construction (2012-2014)

- Prototype AFE, DFE hardware/software/firmware/controls interface
- Perform Beam tests at sister facilities
- Analyze/evaluate/assess data
- Production build/test/install total 60 receiver assemblies for Injector
- Production build/test/install total 250 receiver assemblies for Storage Ring

NSLS-II Operations (2015-Present)

- Completed 283, RFBPM receivers for operations, 10 spare assemblies
- Completed 4, X-Ray BPM receivers for operations, 2 spare assemblies

Next-Generation RFzBPM Development (2016-Present)

- Completed 20 pre-production next generation zDFE Developed/built/tested using existing AFE
- Completed Prototype next generation AFE developed/built, testing in progress
- Completed Prototype BbB BPM receiver(500Msps direct sampling) developed/built, testing in progress

Next-Gen RFzBPM

National Synchrotron Light Source II

NSLS-II BPMs: Receivers

BROOKHAVEN

Data Type	Mode	Max Length
ADC Data	On-	256Mbytes or 32M samples
	demand	per channel simultaneously
Turn-by-Turn	On-	256Mbytes or 5 M samples
(TbT) <i>,</i>	demand	Va,Vb,Vc,Vd, X,Y,SUM, Q,
Frev=379 kHz		pt_va,pt_vb,pt_vc,pt_vd
Fast	Streaming	Streaming - X,Y,SUM; For on
Acquisition	via SDI Link	demand: 256 Mbytes or 5
(FA) , 10KHz	& on	Msamples. Va,Vb,Vc,Vd, X,Y, SUM,
	demand	Q, pt_va,pt_vb,pt_vc,pt_vd
Slow	Streaming	80hr circular buffer
Acquisition	and	Va,Vb,Vc,Vd, X,Y,SUM, Q,
(SA), 10Hz	On-	pt_va,pt_vb,pt_vc,pt_vd
	demand	

- Original NSLS-II development (by Kurt Vetter et al.)
- Resolution specs of 1 μm turn-by-turn (TbT) and 200 nm in 10 kHz (FA) mode were verified during beam commissioning in 2014
- TbT used for injection & kicked beam studies, FA for fast orbit feedback & interlocks, SA for orbit measurements
- Do not have bunch-by-bunch capability (and could not, until recently, resolve bunches within a turn)

NSLS-II BPM Signal Processing

• TbT X, Y, and Σ are obtained (in FPGA for Ops, or Matlab for studies) from ADC signals by coherent signal processing locked to revolution harmonic.

ENERGY Office of Science

BROOKHAVEN NATIONAL LABORATORY

National Synchrotron Light Source II 🔳

NSLS-II BPM Turn-by-Turn Positional Resolution

- Sub-micron TbT resolution is routinely available for long bunch trains
- However, single bunch resolution was 1-2 magnitude orders worse
- It was recently improved [B. Podobedov et. al., IPAC'16] by order of magnitude plus BPM capabilities were enhanced to resolve multiple bunches within a ring turn

National Synchrotron Light Source II 🔳

BPMs have Good Positional Resolution and now We Can Resolve Few Separate Bunches on Every Turn, so What?

- This enables precise beam dynamics measurements
 - Good positional resolution gives good tune resolution
 - Separate bunches measured simultaneously allow for precise reference measurements
- Must have high-resolution BPMs that are capable of accurate tune measurements.
- Better to have many of these BPMs, to improve the resolution further and to quantify it.
- BPMs must capable of resolving turn-by-turn positions of two (or more) individual bunches, with low-current bunch(es) used as a reference.

Collective effect measurement (measure tunes, or other charge-dependent effects)

Office of Science NATIONAL LABORATORY

~10⁻⁷ Tune Resolution has been Demonstrated

Office of

National Synchrotron Light Source II

Shot-to-Shot Tune Stability is Much Poorer

• At NSLS-II typical tune jitter is ~10-4 rms (this tune stability is well within specs)

DEPARTMENT OF

ENERGY

Office of

Science

BROOKHAVEN

• This would normally preclude any measurements which require better tune resolution

National Synchrotron Light Source II 🔳

Shot-to-Shot Tune Jitter is a Common Obstacle for Impedance Measurements

FIG. 3. Histogram of the vertical tune measured by 120 BPMs for 100 acquisitions. The measurement shows an overall standard deviation of 1.1×10^{-4} , on the other hand looking at one single acquisition (in red) the spread is strongly reduced presenting a standard deviation of only 2.1×10^{-6} .

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 121002 (2016)

Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

Michele Carlà, Gabriele Benedetti, Thomas Günzel, Ubaldo Iriso, and Zeus Martí ALBA-CELLS Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290—Cerdanyola del Valles, Barcelona, Spain (Received 13 June 2016; published 19 December 2016)

Macional Synchrotron Light Source II

BRO

NATIONAL LABORATORY

Solution to Overcome Tune Jitter: Reference Measurements

- Two-bunch fill with unequal bunches kicked with a pinger (timed for equal kick)
- ADC data processed to get turn-by-turn positions for each bunch

DENERGY Office of Science BROOKHAVEN

National Synchrotron Light Source II 🔳

Turn-by-Turn Signals

- Each bunch decays a long time, but the combined signal shows beating
- Also instability for high current bunch before the ping

Office of Science BROOKHAVEN NATIONAL LABORATORY

National Synchrotron Light Source II 🔳

Vertical Tunes are Distinctly Different

• Single BPM FFT shows tunes are clearly unequal

Office of

BROOKHAVEN

Detailed analysis with interp'd FFT for 180 BPMs gives

 $\sqrt[V_y=0.26833 \pm 1.93e-5 \text{ (bunch 1)}} \\ \sqrt[V_y=0.26334 \pm 6.90e-6 \text{ (bunch 2)}}$

• Tune difference of $\Delta V_{21} = -5e-3/(0.5 \text{ mA}) = -0.01/\text{ma}$ agrees with other methods

Same Measurement in the Horizontal

- The same pair of bunches, 0.25 mA (1) and 0.75 ma (2)
- Use horizontal pinger
- BPM ADC data processed to get separate TbT positions for each bunch
- Use 25 revolution harmonics to increase the resolution

ΔV_{21} =(6.0 ± 1.9)*1e-5

• This measurement convincingly shows that horizontal tune goes up with current (i.e. total wake is slightly focussing).

BROOKHAVEN VATIONAL LABORATORY

Office of

Science

NERGY

National Synchrotron Light Source II

10⁻⁶ Tune Difference Resolution Achieved

More Advanced Measurement Examples

Three examples to follow:

- Tune shift with current (for collective effects/impedance)
- Tune shift with amplitude (for single-particle dynamics)
- Non-invasive lattice function measurement during user operations (for stability)

Many more applications are possible

Office of BROOKHAM Science **BROOKHAM**

From Tune Slope with Current to Kick Factor and Coupling Impedance

- Typically measuring the kick factor of the entire machine is straightforward, because tune slopes are large (at least in y)
- For NSLS-II (bare lattice ~2014) k_{kick} ~15 kV/pC/m, $\frac{dv_y}{dI_b}$ ~ - 0.075/ma A. Blednykh et al., IPAC'14

If we could resolve tunes to
$$10^{-6}$$

 $k_{kick} = 4\pi (v_{lowQ_b} - v_{hiQ_b}) \frac{E/e}{\Delta Q_b < \beta > 0}$

then we can measure kick factors as low as10 V/pC/m assumed 1 nC, $<\beta>=4$ m, 3 GeV

10 V/pC/m is a resistive wall kick factor of a smooth 1 m long Al pipe 12 mm in diameter (σ_z =5 mm)

National Synchrotron Light Source II

From Tune Slope with Current to Kick Factor and Coupling Impedance

	$\langle y' \rangle = \frac{Q_b}{E/e} k_{kick} \langle y_0 \rangle$	definition
Kick factor:	$k_{kick} \propto \int \tilde{\rho} ^2 \operatorname{Im}[Z_y(\omega)] d\omega$	relation to impedance (ρ or, at least, σ_z are measured separately)
	$\delta v_{y}(Q_{b}) = -k_{kick}Q_{b} \frac{<\beta_{y}>}{4\pi \ E/e}$	relation to tune slope with charge
	$k_{kick} = -\frac{4\pi \ E/e}{<\beta_y > T_{rev}} \frac{d\nu_y}{dI_b}$	or with beam current

Reference technique allows for repeated measurements, while moving small impedance components or making local orbit bumps¹ around them, so we can resolve small impedances on top of relatively large total impedance of the ring.

Office of Science

¹V. Kiselev, V. Smaluk, DIPAC 1999 L. Emery, G. Decker, and J. Galayda, PAC'2001

- Typically measuring the kick factor of the entire machine is straightforward, because tune slopes are large (at least in y)
- For NSLS-II (bare lattice ~2014) k_{kick} ~15 kV/pC/m, $\frac{dv_y}{dI_b}$ ~ - 0.075/ma A. Blednykh et al., IPAC'14

If we could resolve tunes to
$$10^{-6}$$

$$\delta k_{kick} = 4\pi \delta (v_{lowQ_b} - v_{hiQ_b}) \frac{E/e}{\Delta Q_b < \beta > 0}$$

then we can measure kick factors as low as10 V/pC/m assumed 1 nC, $<\beta>=4$ m, 3 GeV

10 V/pC/m is a resistive wall kick factor of a smooth 1 m long Al pipe 12 mm in diameter (σ_z =5 mm)

National Synchrotron Light Source II

Local Impedance Measurement: Vertical Scraper

- Measure tune difference high-Q bunch vs. reference train (low-Q / bunch)
- Repeat with the scraper inserted
- Change in the tune difference is due to added scraper impedance

• Complimentary measurement would be from closed orbits (no kick), TBD

Office of

Science

BROOKHAVEN

Same for the Horizontal Scraper

- Two bunches stored, inner scraper blade moved in
- Change in the tune difference is due to (added) scraper impedance
- As expected, wake effect becomes de-focussing as the scraper moves in

In-Vacuum Undulator Tuneshifts vs. Gap

- Performed on C4-ID (ISR, IVU23, L=2.8 m). Tune difference between the train and camshaft bunches measured vs. gap.
- ~10⁻⁶ tune relative tune resolution at <1000 turns, 0.3 mA camshaft bunch current, adequate to see the effect
- Measured current-dependent tuneshifts are two orders of magnitude smaller than the tuneshift induced by the natural focusing of the undulator => reference technique is a key

Office of

For alternative method see e.g. V. Smaluk et al., NIM A, 871 (2017) National Synchrotron Light Source II

Single Shot Measurement of Tune Shift with Amplitude

Conventional measurement New option Alternative new option

Limited by kicker jitter and machine drifts

Office of

Science

BROOKHAVE

Limited number of trains / turn => few data points only

Worked for us

National Synchrotron Light Source II 🔳

Measurement Setup

- Fairly uniform fill pattern at low current (no collective effects)
- Adjust pinger timing to center maximum kick in the middle
- 11 sample ADC bin (~47 RF buckets); slide over the turn (results independent of bin size when << than kicker rise time)

TbT Signals from Selected ADC Bins

EPARTMENT OF

JERGY

Office of

Science

BROOKHAVEN

NATIONAL LABORATO

- Induced amplitudes vary according to bin position with respect to pinger
- Short chunks of the bunch train can be resolved!

Final Results: Horizontal

- Final result for 5mA/1000 bunches, single pulse of 2 kV ("bare" lattice)
- Conventional measurement: 2 mA/100 bunches; 20 separate "pings"; clear pulse-to-pulse jitter, longer term drifts are likely
- Further optimization of new technique possible

Office of Science BROOKHAVEN NATIONAL LABORATORY

Final Results: Horizontal

- Final result for 5mA/1000 bunches, single pulse of 2 kV ("bare" lattice)
- Conventional measurement: 2 mA/100 bunches; 20 separate "pings"; clear pulse-to-pulse jitter, longer term drifts are likely
- Further optimization of new technique possible

Office of Science BROOKHAVEN NATIONAL LABORATORY

Example of Further Optimized Measurement

- "3 Damping Wiggler" lattice
- Gated turn-by-turn 180 BPMs for amplitude, BxB feedback for tune
- Distortion around $v_x = 0.2$ (5 v_x resonance), more pronounced with larger number of turns used for tune extraction
- Simulated frequency map analysis (w/ engineering tolerance) predicted this resonance!
 Office of Science
 National Synchrotron Light Source II

Lattice Functions Measured from Camshaft Train during User Operations

- Motivation: user beam stability
- Constraints: user beam stability
- Small perturbation on a small fraction of the train is driven by transverse bunch-by-bunch feedback
- Use gated signal from 180 BPMs to measure lattice functions
- Need good TbT resolution and ability to discriminate between the camshaft and the main train

Office of

BROOKHAVEN

W. Cheng, K. Ha, Y. Li, B. Podobedov MethodsX 5 (2018) 626-634

National Synchrotron Light Source II

Conclusions

- State-of-the-art NSLS-II BPM receivers enable advanced beam dynamics measurements, which rely on resolving individual (or groups of) bunches within a turn.
- We can resolve the tunes of several individual bunches stored in the ring with very high accuracy. 10⁻⁶ tune resolution has been demonstrated.
- This enables a fast and precise reference technique for measuring the transverse impedance (kick factor) of storage ring elements.
- This technique eliminates harmful effects of machine drifts. It also eliminates other large systematic effects, unrelated to the impedance, i.e. singe particle tune change due to undulator gap closure.
- Other applications include single-shot measurements of tune-shift with amplitude, non-invasive lattice characterization during user operations and more.
- Looking forward to on-going NSLS-II R&D for "real" bunch-by-bunch BPM
- We are confident that new applications will come up and are looking forward for stimulating discussions at this conference

Acknowledgements

I would like to acknowledge the enormous help I received from many present and former NSLS-II colleagues but especially from

Weixing Cheng, Yoshiteru Hidaka, Yongjun Li (physics), Kiman Ha, Joe Mead, Om Singh, Kurt Vetter (diagnostics), as well as from Dmitry Teytelman (everything)

