Diverse Beam Profile Shapings through Nonlinear Focusing of Multipole Magnets in a Beam Transport Line

Yosuke YURI and T. Yuyama

Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST Takasaki)

<u>M. Fukuda</u>

◆ 大阪大学
Research Center for Nuclear Physics, Osaka University

NA-PAC2019 (2019/09/06)

Contents

1. Introduction

- Feasibility of the beam profile shaping using the nonlinear focusing force
- 2. <u>Existing technique</u>: Uniform beam formation using octupole magnets
- 3. <u>Main Topic</u>: Hollow beam formation using multipole magnets
 - Experiment
 - Tracking simulation

4. Summary

Feasibility of beam profile shaping using the nonlinear focusing force

Equation of motion in the horizontal and vertical directions:

 $\begin{cases} x'' + K_{\text{QUAD}}(s)x + \frac{K_{\text{SXT}}(s)}{2!}(x^2 - y^2) + \frac{K_{\text{OCT}}(s)}{3!}(x^3 - 3xy^2) + \dots = 0\\ y'' - K_{\text{QUAD}}(s)y - \frac{K_{\text{SXT}}(s)}{2!}(2xy) + \frac{K_{\text{OCT}}(s)}{3!}(y^3 - 3x^2y) + \dots = 0\\ Quadrupole \qquad \text{Sextupole} \qquad \text{Octupole} \end{cases}$

- Controlling the complicated particle motion properly,
 - It should be possible to generate unique beam profiles that can never be realized by linear focusing.
 ✓ Uniform profile (NSRL@BNL, J-PARC, etc.)
 ✓ Hollow profile

Beam shaping using octupole magnets

QST Takasaki's Cyclotron Facility

Bending limit K _b 110 MeV	
Ion species	Energy [MeV]
Н	10 ~ 90
He	20 ~ 107
С	75 ~ 320
Ar	107 ~ 520
Kr	210 ~ 520
Xe	320 ~ 560
	_

Main applications

RI production Mutagenesis of plants Material modification Radiation testing of devices

Existing nonlinear beam shaping: Uniform beam formation

[2D profile (560MeV ¹²⁹Xe)]

Diverse beam shaping: Hollow beam formation

Existing method (uniform beam formation)
 ✓ The peak is generated at the edge of the beam.
 ⇒ Central uniform region is used for uniform irradiation.
 ✓ Horizontal-vertical coupling is suppressed.
 ⇒ Rectangular cross-sectional shape

■New scheme
 ✓ Raise the intensity around the edge
 ⇒ Distribution can be made "hollow."
 ✓ Betatron coupling
 ⇒ Various cross-sectional shapes

(other than a rectangle)

Beam experiment at QST Takasaki

Experimental results (1)

Experimental results (2)

Tail collimation using beam slits before octupole magnets

- ✓ The streaks have been suppressed.
- ✓ These streaks are induced by strong X-Y coupling.
- ✓ Clearly hollow profile!!

Experimental results (3)

The cross-sectional shape changes depending on the octupole strength.

Hollow beams of various cross-sectional shapes can be generated easily using multipole magnets.

Particle tracking simulation

200

_4

Vertical position [cm]

Contrast: 6~17 Edge peak width~1mm 3.8e+3 3.6e+3

3.2e+3

4.0e+3 3.8e+3 3.6e+3 3.4e+3

3.2e+3

2 Oe+3

2e+3

8.0e+2

6.0e+2 .0e+2

0e+2

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 Vertical position [m]

-4e-3

-5e-3

Simulation results

Octupole focusing → Ellipse ~ Rectangle ~ Rhombus

Experimental results have been well reproduced.

Diverse beam profile shaping is possible, depending on the order and strength of multipole magnets.

Sextupole

focusing

 \rightarrow Triangle

Summary

✓ We have demonstrated the formation of a hollow beam through the nonlinear force of multipole magnets.

Y. Yuri et.al., Prog. Theor. Exp. Phys. 2019 (2019) 053G01.

✓ Different characteristics have been revealed:

- Steep, narrow peak at the edge
- The cross-sectional shape depends on the order and strength of multipole magnets.

Rectangle ~ Ellipse ~ Rhombus for octupole focusing Triangle-like for sextupole focusing

- ✓ The proper use of the nonlinear force enables us to achieve unique beam shaping that cannot be realized by conventional linear focusing.
 - Applicable to various beams of different parameters (species, energy, bunched or coasting, current, etc.) as the source of the nonlinear force is the magnetostatic field.

✓As an application of a hollow beam, irradiation of the hollow beam is now investigated toward efficient production of low-energy muons at RCNP, Osaka Univ.

SolutionNational Institutes for Quantum and
Radiological Science and Technology

Thank you for your attention!!

This work was supported in part by grant-in-aid programs in Japan.

- ✓ JSPS KAKENHI (JP18K11934)
- ✓ JST OPERA (Quantum Innovation for Safe and Smart Society)

Supplements

A possible application of the hollow beam

Pion capture solenoid & Pion transport solenoid

- Pion capture solenoid (3.5T)
 - pion production target inside (1.5 interaction length)
 - pion collection with large solid angles
- Pion transport solenoid (2.0T)
 - -Curved solenoid to capture and transport pion/muon
 - Momentum selection with dipole collection field

Previous studies of hollow beam formation

• Plasma lens (Z pinch discharge)

- <u>Short-pulsed heavy-ion beam</u> (~100MeV/u)
- Beam diameter~2cm
- Edge peak width~5mm
- Contrast~10
- Axisymmetric target irradiation for HED/HIF
- Hollowing due to space-charge effect
 - <u>High-current heavy-ion beams</u> from ECR ion source
 - Coexistence of ion beams with a different M/Q ratio
- Hollow electron gun
 - <u>keV electron beams</u>

The generation method and availability of hollow beams are limited.

FIG. 1. 10 mm radius ringlike light output from a scintillator situated perpendicular to the axis 0.3 m behind the plasma lens.

FIG. 6. Radial profile of the beam intensity distribution in the detection plane 0.3 m behind the plasma lens for the case of the optimum contrast of 10.

U. Neuner et al., Phys. Rev. Lett. 85 (2000) p4518.

FIGURE 3. ECR is tuned to produce 48 Ca of about 100 eµA summed over all charge states. The support gas is helium of about 1200 eµA. Here, the solenoid and analyzing magnet are set first to select 48 Ca⁺⁸, then 4 He⁺¹ and finally 4 He⁺². Since the intensity of 48 Ca in charge states higher than 8+ is low, the ring in the first picture is produced by short focusing of both helium charge states. J. W. Stetson *et al.*, CYC(2004)p483.

FIG. 2 (color online). Hollow electron gun: (a) top view; (b) side view; (c) measured current density profile; (d) measured charge density ρ and calculated radial electric field E_r .

G. Stancari *et al.*, Phys. Rev. Lett. 107 (2011) 084802.

40 Ar 9+ / ACC 12,14 kV / max intensity at FCJ2 about 110 uA SOLJ1 98 A / SOLJ2 0 A / This is the beam shape with maximum intensity

Figure 4: The beam profiles of Ar^{9^+} ion beam after the analysing magnet.

H. Koivisto *et al.*, ECR(2008)p18.

Theoretical analysis (1D model)

✓ The on-target phase-space shape can be approximately characterized by the <u>Twiss parameters</u>, the <u>phase advance</u> and the <u>octupole strength</u>:

$$= \int_{-\frac{K_{02}}{6}} \frac{k_{01}}{\sqrt{\beta_1\beta_1}} \cos(\phi + \theta) x_1 - \frac{K_{01}}{6} \sqrt{\beta_1\beta_1} \sin(\phi + \theta) x_1^3 - \frac{K_{02}}{6} \sqrt{\beta_2\beta_1} \sin(\phi + \theta) x_1^3 - \frac{K_{01}}{6} \sqrt{\beta_2\beta_1} \cos\phi x_1 - \frac{K_{01}}{6} \sqrt{\beta_1\beta_2} \sin\phi x_1^3 \right)^3$$

$$= \int_{-\frac{K_{02}}{6}} \frac{k_{02}}{\sqrt{\beta_1\beta_1}} \left\{ \sin(\phi + \theta) + \alpha_t \cos(\phi + \theta) \right\} x_1 - \frac{K_{01}}{6} \sqrt{\beta_1\beta_1} \left\{ \cos(\phi + \theta) - \alpha_t \sin(\phi + \theta) \right\} x_1^3$$

$$= \int_{-\frac{K_{02}}{6}} \frac{k_{02}}{\sqrt{\beta_1\beta_1}} \left\{ \cos(\phi - \alpha_t \sin\theta) \left(\sqrt{\beta_2\beta_1} \cos\phi x_1 - \frac{K_{01}}{6} \sqrt{\beta_1\beta_2} \sin\phi x_1^3 \right)^3 \right\}$$

$$= \int_{-\frac{K_{02}}{6}} \frac{k_{02}}{\sqrt{\beta_1\beta_2}} \left\{ \cos(\phi - \alpha_t \sin\theta) \left(\sqrt{\beta_2\beta_1} \cos\phi x_1 - \frac{K_{01}}{6} \sqrt{\beta_1\beta_2} \sin\phi x_1^3 \right)^3 \right\}$$

The beam motion under nonlinear focusing has been theoretically predicted.