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Introduction 00 - viewing the variation of critical
In the present paper, an analytical steady-state solution for continuous-wave T ggéveezis\éva:me \Igitcy;n%xeilolc;“sr:e%
(CW) laser input is derived to address potential thermal issues in thin diamond. 400 -+ spot size. Similarly, Figs. 4-6
The temperature-dependent thermal properties of diamond, i.e., thermal ﬁ <how crit.ical powe,r f1 .as 5
conductivity and specific heat capacity, valid for temperature in the range from = 300 - function of R/a for various
100 K to 3000K, are used in the calculation. The objective of this study is to = target tolerable temperatures
provide a quick estimation tool for determining operational guild line based on £ 500 1 with edge cooling
thin-diamond material properties and cooling condition under focused Ilaser = temperatures T = 100.200
heating at high repetition rates. From the steady-state solution, by setting the 100 ] and 300 K. res K ’
g . , pectively.
central temperature T —» «, the thermal runaway condition can be defined. A » e 5
relaxed thermal runaway condition can also be defined by setting T, equal to a ; Z e steadA?staSteeen rom cI:ge.ntra,I
finite value, for instance, graphitization temperature, to address a particular effect 0 - 10 60 %0 100 fem g/rature ” creases
of concern. The relationships between dimensionless terms of cooling edge R/a relailzjivel sIOowI With
distance to laser waist size ratio R/a, edge cooling temperature T, and critical Fig 3: Variation of critical laser heating power at . Y | vy
(allowed) laser heating power fI are discussed. It shows that the critical heating definite runaway condition (T =) as a function of INCreasing laser 'an.'t POWEF
power fI is higher with smaller R/a, and lower Tr. However, when it comes to R/afor Tp = 100,,150,200, 250 and 300K. a|11: smaI_I poOWer magnlt_gclzles. It
design of an edge cooling system, there are limits such as the size of the working 600 T E.eﬁ NCreases - rapidly at
area and the size of the cooling device. : igher power magnitudes, and
. J 500 - eventually  approaches to
) . : infirr]]ity at a cr;iticall power,I at
- _400 - eac one of the coolin
PrOblem Formulatlon %—- temperatures. At the criticagl
Consider a train of X-Ray pulses impinging perpendicularly at the center of a =300 - power, the definite thermal
circular, thin diamond crystal at repetition rate f, as illustrated in Fig. 1. The = runaway condition is reached.
circumferential sink temperature is held constant via a cooling system. The pulses = 200 - _ _
are assumed to be Gaussian, and extremely short compared to all other time ; Lowering edge cooling
scales under consideration. The 100 - z?mE:IrathVeer ITPLIOC:/vinerthi?c
\r:vef16i];ce i: IgigSSiTDeuc:seinligasnstelz @ N ®) i : _ol ; Izlol ; |4|ol a I6I0I B Islol a I1oo cannot I:;Iimina]tce. the therl%al
through the crystal. The l—__ R/a ;Lfgawa_lyé as sh_ct?_wnl in all Figs.
problem is axisymmetric with l#__c/f Fig 4: Variation of critical laser heating power at Conaitionse argrglecnasitiv;uggvzﬁg
radial axis r set from the i ] definite runaway condition (T; = «) as a function of R/a )
center. The temperature field is 0,To |} +h for T = 100 K. cooling  temperature  and
assumed to be uniform in the l*’r R, Tr 400 ;32I|r;gtioec:gesn§|;s”ta?cee xﬂ:z
through-thickness direction. ' Lo

the cooling edge is close to
T, = —inf -
o ook the laser spot, as shown in
1500 K Figs. 3-6. For a given laser
100K spot size a, moving cooling

The deposited energy is _
dissipated by conduction inside 300 7
the plate only; any radiative '
heat transfer is assumed to be
negligible.

Fig 1.Schematic show of high repetition rate laser 500 K
heating in a thin crystal: (a) top view and (b) side view. edge closer to the laser does

oT _ - not help very much critical
- Heat flux in radial direction: j = x— 100 power fI for large ratios of

N
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o
|

Critical fI (W)

or R/a . Depending on cooling
o B _ _ edge temperature, when R/a
+ Temperature dependent thermal conductivity: x = aT~F I I is in the range of 10 -20 um,
| | azfio . 0 20 40 60 80 100 the improvement rises
» Circumferential heat flux: j = [1 — e~ 2(r/a) ] R/a abruptly. Practically,  this
4hr Fig 5: Variation of critical laser heating power at  strategy of imposing heat sink
] Yy definite runaway condition (T; = o) as a function of R/a this close may work for large
. T — 1)f1 1-f for T, = 200 K. : :
+ Central-edge temperature ratio: — = |1 B-Dr Ein(V2R/a) § spot sizes, for instance, a >
Ts Arthip T 300 - 100 yum . However, for small
| ' R 1—e—2(r/a)? ' ! spot sizes, for instance,
Ein(VZR/a) = 2 [} ————dr 250 - I = —inf 10-20um , it can be
i 2000 K I
900 00 K challenging.
N / 2 o Setting  lower  target
. . 5 150 - runaway temperature, the
Results & Discussion g - critical (allowed) power fI
| 1001 would be lower. The reduction
By using above xy values 2000 - in critical fI is more significant
of a and f, setting h = 110 um | R/a=50 : at higher cooling edge
of a thin diamond crystal, _ o temperature. These results as
steady-state runaway 1500 - 0 20 40 60 80 100 shown in Figs. 3-6 can help
conditions are evaluated for - R/a estimate the effect semi-

various values of Tp, Ty, and Fig 6: Variation of critical laser heating power at quantitatively for different lab

R/a. Fig. 2 shows the variation <, ,., definite runaway condition (T = ) as a function of R/a  gettings.
of steady-state central : _ for T = 300K. )
temperature T, as a function
of laser input power fI for - 4 . h
various edge cooling 200 Conclusions
temperatures from 100K to _ Thermal analysis of thin diamond crystal under high-repetition-rate high-
300 K and fixed crystal size to ) intensity laser heating is carried out to address the potential thermal issue,
laser spot size ratio R/a = 50. 5 - uim - 2{'}0 - 200 an_a_lytically. The ste_a_dy-state_solu_tion for CW laser heating_ is derived. I_t c_:an_be
Fig. 3 shows the critical power Critical f1 (W) utlllzed. as an efficient _estlmatlon tool for future design and pptlmlzatlon
f1 as a function of R/a for the Fig 2: Variations of steady-state central temperature as a calc_:u_latlons. The results in a _f_ew selected_ cases are plotted an_d discussed for
definite runaway condition. it fu?wctilon of laser heatingy power for fixed R/a =50 and deﬂg';&e thetrma,lc. runafwayll Cogclllr;uon bly setting 7o _>d?1(:)'. Thg SOI%E.Ion ;al,: aISfO I:;e
ives the perspective of i _ used for estimation of relaxe ermal runaway conditions by setting T, to a finite
- il various Ty = 100,150, 200,250 and 300K “ | temperature, required by optical performance or at graphitization temperature.
r 2 Although diamond is a thermally superior material, thermal fatigue may also be
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