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Abstract
In the high intensity limit it can become difficult to sim-

ulate intense beams sufficiently within a short time scale
due to collective effects. Semi-Analytic methods such as the
Square Well Model [1]/AirBag Square Well [2] (SWM/ABS)
exist to estimate collective effects within a short time scale.
SWM/ABS discretizes the longitudinal confining potential
into a single square well enforcing linearity for the case of
linear transverse optics. A method is proposed here to ex-
tend the Square Well Method to multiple square wells. This
method preserves linearity properties that make it easily solv-
able within a short time scale as well as including nonlinear
effects from the longitudinal potential shape.

INTRODUCTION
For the general case of instabilities in the presence of col-

lective Space Charge (SC) and Wakefield effects, an exact
solution does not exist except in special cases. To evaluate
instabilities with SC and Wakefields, a simulation method
must be applied. Unfortunately, many of these methods take
a prohibitively long time to reach a solution. In order to
reach a rapid solution while including both SC and Wakes,
some sort of well founded simplification must be made to
the dynamics of the system. Previous work exists where the
longitudinal potential is simplified to a single finite square
potential well [3]. A single potential well like this confers
several useful properties to the longitudinal dynamics that
make it easily solvable. This has been applied to the Trans-
verse Mode Coupling Instability (TMCI).

For a single finite square well, there are two synchrotron
tunes which correspond to a set of discrete longitudinal ve-
locities in opposing longitudinal directions. These velocities
form a single cycle with simple longitudinal particle dynam-
ics. Under linear focusing optics collective particle moments
and wakes are a system of linear ordinary differential equa-
tions solvable by matrix methods. These methods produce
a set of tune shift parameters that indicate the presence of
the TMCI instability. Although simple and efficient, the
single finite square well underestimates the onset of TMCI
compared to many other theoretical methods. [4]

By increasing the number of approximating square wells,
the number of discrete longitudinal velocities increases al-
lowing for the introduction of nonlinear chromatic effects as
well as well as the introduction of synchrotron tune spread.
This increases applicability to realistic systems.
∗ Work supported by by Brookhaven Science Associates, LLC under con-
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THEORY
To expand upon the SWM/ABS models one should begin

with the equations of motion of a particle in a ring undergo-
ing linear transverse motion with chromatic tune shift ξ( Ûz),
linear space charge, and wakes (Eq. (2) from [3]).

d2x
dt2 =

dpx

dt
= [−(Q2

x + ξ( Ûz))x + Cscρ(z)(x − x(t, z))

+

∫ z

0
dz′W(z − z′)ρ(z′)x(t, z′)]ω2

0

≡ [xg1(z, Ûz) + g2(t, z)]ω2
0 (1)

ρ(z) corresponds to the linear longitudinal particle den-
sity. Due to the presence of both single particle motion and
collective effects, it is difficult to treat analytically unless
the collective effects act as a small perturbation on single
particle motion.

To properly consider the collective effects, we shall define
collective phase space moments from the Vlasov Equation.
Since longitudinal dynamics generally vary slowly compared
to transverse dynamics, we assume that the longitudinal dy-
namics are independent of transverse, while the transverse
dynamics are dependent on longitudinal. This indicates
that it is possible to construct and use two separate Vlasov
Equations, one longitudinal and one transverse. The longitu-
dinal particle density ψ(t, z, Ûz) can be constructed out of the
moments from the transverse particle density f (t, x, px, z, Ûz)∫ ∞

−∞

dx
∫ ∞

−∞

dpx f ≡ ψ(t, z, Ûz) (2)∫ ∞

−∞

dx
∫ ∞

−∞

dpx x f ≡ D(t, z, Ûz) (3)∫ ∞

−∞

dx
∫ ∞

−∞

dpxpx f ≡ P(t, z, Ûz) (4)

In the case of linear optics, these moments converge to a
and we can apply ψ to the longitudinal Vlasov.

dψ
dtL
=
∂ψ

∂t
+ Ûz

∂ψ

∂z
−

1
m

dU(z)
dz

∂ψ

∂ Ûz
= 0 (5)

The properties of these collective moments and their re-
spective convective derivatives allow for the creation of col-
lective equations of motion. These equations of motion are
analogous to the single particle EOM in Eq. (1).

d2D
dt2

L

=
dP
dtL
= [g1(z, Ûz)D + g2(t, z)ψ]ω2

0 (6)
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Single Sideband Approximation
In order to solve this problem within a fast timescale, we

are looking turn these equations of motion into a series of 1st
order differential equations that can be solved using matrix
methods. There are two main methods one could take to
accomplish this. The exact solution can be obtained by turn-
ing Eq. (6) into a set of two first order differential equations.
This unfortunately increases the complexity of the solution
and is more difficult to obtain physically meaningful solu-
tions. The other main method that could be used is to restrict
the problem to the upper betatron sideband [5]. This sim-
plifies the moment D to a quickly oscillating term e−iQxω0t

and a slowly varying term D where D = Re(De−iQxω0t ).
The slowly varying term has a vanishing second derivative
d2D
dt2

L

≈ 0. If this applied to Eq. (6) one will eventually obtain
a linear differential equation as planned.

d2D
dt2

L

= −(2iQxω0
dD
dtL
+Q2

xω
2
0D)e−iQxω0t (7)

Combining Eq. (6) and Eq. (7) we obtain the below
statement.

dD
dtL
=

iω0
2Qx

[D(Q2
x + g1(z, Ûz)) + ψeiQx tg2(t, z)] (8)

Now we need to look at this problem in terms of partial
derivatives to be more directly useful. Applying the longitu-
dinal convective derivative:

∂D

∂t
+ Ûz

∂D

∂z
−

1
m

dU(z)
dz

∂D

∂ Ûz

=
iω0
2Qx

[D(Q2
x + g1(z, Ûz)) + ψeiQx tg2(t, z)] (9)

Effects of Square Potential Well
In order to make the transverse collective equations of

motion solvable as a system of linear differential equations,
an arbitrary longitudinal potential must be simplified to a
series of finite square potential wells. Since the longitudi-
nal dynamics are independent of transverse directions (by
assumption), we know that longitudinal particles will travel
in filaments along with constant Ûz within individual domain
slices. This means we can further simplify Eq. (9) within a
domain slice.

∂D

∂t
+ Ûz

∂D

∂z

=
iω0
2Qx

[D(Q2
x + g1(z, Ûz)) + ψeiQx tg2(t, z)] (10)

In addition, collective terms such as D and ψ are of the
formΣ2m

j=1 f nj (t, z, Ûz)δ( Ûz − Ûznj ). Since these Differential equa-
tions exist at a set of discrete longitudinal velocities we can
integrate over Ûz and obtain a set of differential equations that
can be used characterize the system.

∫ Ûznj +ϵ

Ûznj −ϵ
d Ûzψ(z, Ûz) = ρnj (11)∫ Ûznj +ϵ

Ûznj −ϵ
d ÛzD(t, z, Ûz) = D̂n

j (12)∫ ∞

−∞

d Ûzψ(z, Ûz) = ρn = Σ2m
j=1ρ

n
j (13)∫ ∞

−∞

d ÛzD(t, z, Ûz) = eiQx t ρnx = Σ2m
j=1D̂n

j (14)

Where m = N−|N−n| with n as the domain slice and N the
number of approximating potential wells for a singly peaked
potential. The domain slice number n is the number of
potential well discontinuities between 0 and z. The domain
slice number ranges from 1 to 2N−1. A diagram showing the
longitudinal phase space of these domain slices is provided
in with Fig. 1.

Diagram of Multiple Square Well Model

Figure 1: Longitudinal Phase Space diagram for a multiple
square well method. Note the symmetry around Ûz as well as
the shape of the cycles and how the cycles are organized.

∂D̂n
j

∂t
+ Ûznj

∂D̂n
j

∂z

=
iω0
2Qx

[D̂n
j (Q

2
x + g1(z, Ûznj )) + ρ

n
j eiQx tg2(t, z)] (15)

∂D̂n
j

∂t
+ Ûznj

∂D̂n
j

∂z
=

iω0
2Qx

[D̂n
j (CscΣ

2m
j=1ρ

n
j − ξ( Ûz

n
j ))

+ ρnj (

∫ z

0
dz′W(z − z′)Σ2m

j=1D̂n
j − CscΣ

2m
j=1D̂n

j )] (16)

The wake term still exists, but can be simplified by treating
it as assuming the wake is a sum of exponential functions.
With this assumption

∫ z

0 dz′W(z − z′)Σ2m
j=1D̂n

j = Σ
κ
k=1F̂n

k
.

One can also obtain a set of differential equations describing
the wake.

dF̂n
k

dz
= wkΣ

2m
j=1D̂n

j − αk F̂n
k (17)

Equation 6 is almost finished but it is still in the form of a
linear PDE. These have a family of possible solutions that
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’Tune Search’ for Constant Wake w0 = 1.0, w0 = 2.5

Figure 2: Example of tune shift algorithm searching for solutions for ∆Qx that satisfy boundary conditions. The left plot
only has real solutions and is below threshold for TMCI. The right plot has imaginary solutions which correspond to above
threshold for TMCI.

satisfy the differential equation and boundary conditions.
If we assume that ∂t D̂n

j = −i∆Qxω0D̂n
j , where ∆Qx is a

parameter that satisfies the boundary conditions, the set of
∆Qx create a basis for the family of solutions to the PDE.
If any of these basis functions have a positive imaginary
component, that corresponds to being above the threshold
for TMCI. See Fig. 2 for an example of below and above
TMCI threshold.

dD̂n
j (z)

dz
=

iω0
2Qx Ûznj

[D̂n
j (z)(2Qx∆Qx−ξ( Ûznj )+CscΣ

m
n=1ρ

n
j )

+ ρnj (F
n
k (z) − CscΣ

m
n=1D̂n

j (z))] (18)

Solving and Applying Continuity
With all the simplification out the the way Eq. (17) and

Eq. (18) represent a coupled set of Linear ODEs that span
the longitudinal domain and include Space Charge effects
along with Wakes. In addition, as these ODEs have constant
coefficients, every domain slice can be solved by eigenvalue
eigenvector methods of the form ∂

∂z
®Vn = M ®Vn with the

vector made up of the basis functions of our differential
equations.

®Vn =

©«

D̂n
1
...

D̂n
2m

F̂n
1
...

F̂n
κ

ª®®®®®®®¬
(19)

Using this method we obtain a solution in terms of eigen-
values and eigenvectors of the following form.

®Vn(z) = Σm+κl=1 νlaleΛl (z−zn−1) (20)

where νl is the lth eigenvector, Λl the corresponding eigen-
value, and al are constraints chosen to obey boundary condi-
tions. From here all that is left is to impose initial conditions.
These are all fairly simple and corresponding to continu-
ities in the spacial moment such as Dn

j (zn) = Dn+1
j (zn) and

continuity in the wake Fn
k
(zn) = Fn+1

k
(zn). Other continu-

ity equations exist, like the effect of wakes from previous
bunches on the current bunch F1

k
(0) = CF2N−1

k
(2N − 1).

It should be noted that not all constraints can be satisfied
for an arbitrary value of ∆Qx . If the continuity conditions
are not satisfied, then the ∆Qx is not a basis functions for
the PDE solution. Using an incorrect ∆Qx as a guess, it
is possible to converge to a value for the parameter that
satisfies boundary conditions by a simple error minimization
procedure [1]. By this method, it is possible to obtain the
set of basis functions that correspond to the complete family
of solutions to the PDE. If any of the solutions are positive
imaginary, the problem is above the TMCI threshold.

CODE DEVELOPMENTS
A code is in the process being developed to find the tune

shift basis functions for an arbitrary set of square potential
wells. Recently, it has observed the onset of the TMCI insta-
bility in the constant wake regime in a single square potential
well and is now in the process of benchmarking against re-
sults from other simulations. Constant wake simulations are
within 1% (Fig. 13 [3])of previously quoted figures. Once
the efficacy of the code is proven, the method will be adapted
to multiple potential wells.

CONCLUSION
The method proposed for a multiple square well model

offers the capability to include collective effects in a quickly
converging semianalytic model that should be able to predict
TMCI thresholds more accurately than previously possible
with similar models. A code to implement this method to
multiple wells is in progress.

REFERENCES
[1] M. Blaskiewicz, "An Exactly Solvable Model of Transverse

Stability in Bunched Beams." AIP Conference Proceeding, vol.
448, p. 213, 1998. doi:10.1063/1.56774

[2] A. Burov, "Convective instabilities of bunched beams with
space charge." Phys. Rev. Accel. Beams, vol. 22, p. 034202,
2019. doi:10.1103/PhysRevAccelBeams.22.034202

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLM12

05: Beam Dynamics and EM Fields
TUPLM12

397

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



[3] M. Blaskiewicz, "Fast head-tail instability with space charge."
Phys. Rev. ST Accel. Beams, vol. 1, p. 044201, 1998.
doi:10.1103/PhysRevSTAB.1.044201

[4] A. Burov and T. Zolkin, "TMCI with Resonator Wakes." Fer-
milab, Batavia, USA, Rep. FERMILAB-TM-2680-APC-CD,
Jun. 2018. doi:10.2172/1480111.

[5] M. Blaskiewicz, A. Chao, and Y. H. Chin, “Understand-
ing the Effect of Space Charge on Instabilities”, in Proc.
IPAC’15, Richmond, VA, USA, May 2015, pp. 743–745.
doi:10.18429/JACoW-IPAC2015-MOPMN019

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLM12

TUPLM12
398

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

05: Beam Dynamics and EM Fields


