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Abstract
Quadrupole and solenoid scans are common techniques

where a series of beam profile measurements are taken under
varying excitation of the linear focusing elements to unfold
second-order phase-space moments of the beam at an up-
stream location. Accurate knowledge of the moments is
crucial to machine tuning and understanding the underlying
beam dynamics. The scans have many sources of errors
including measurement errors, field errors and misalign-
ments. The impact of these uncertainties on the moment
measurement is often not analyzed. This study proposes a
scheme motivated by linear algebra error bounds that can
efficiently select a set of scan parameters to minimize the
errors in measured initial moments. The results are verified
via a statistical error analysis. These techniques are being
applied at the Facility for Rare Isotope Beams (FRIB). We
find that errors in initial moments can be large under con-
ventional scans but are greatly reduced using the procedures
described.

INTRODUCTION
Quadrupole and solenoid scans (Q-scans and S-scans)

are standard techniques for measuring a beam’s transverse
phase-space moments. The moments at an initial location
are obtained by varying the strengths of focusing elements
and making multiple spatial profile measurements at a down-
stream location, typically with wire scanners. With the as-
sumption of linear single-particle dynamics, which is often
a good approximation over a short transport length, trans-
verse phase-space moments can be solved via a system of
linear equations: 𝐴x = b where b consists of measurement
results, x are the unknown initial beam moments, and 𝐴 is
the coefficient matrix derived from the linear transfer map
between the measurement and reconstruction points.

Transverse phase-space moments obtained by Q-scans
and S-scans are subject to many sources of errors. Errors
in profile measurements correspond to errors in b, whereas
errors in the matrix 𝐴 arise come from errors in the linear
transfer map which have many potential causes including
mechanical misalignments and field errors. This study first
introduces how the errors in transverse phase-space moments
can be quantified. Next, we discuss how such errors can be
minimized via a suitable set of scanning parameters and
present an efficient method for their selection. The method
is illustrated by Q-scans performed at the FRIB [1] front end.
Lastly, we conclude with an outlook for further work.
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ERROR QUANTIFICATION
The errors of Q-scans and S-scans can be quantified in

two ways: 1) Statistical Analysis; and 2) Sensitivity Analysis.
These two approaches provide complementary information.

Statistical Analysis
To perform statistical error analysis, one repeatedly solves

the equation:

(𝐴 + 𝛿𝐴) (x + 𝛿x) = (b + 𝛿b) (1)

where x is the unperturbed solution to 𝐴x = b, 𝛿x is the
change to the unperturbed solution, and 𝛿b and 𝛿𝐴 are ran-
dom perturbations to measurement results b and the coeffi-
cient matrix 𝐴 respectively. The magnitudes of 𝛿b and 𝛿𝐴

are determined by estimates from all sources of errors. The
resulting set of perturbed solutions (x + 𝛿x) can be plotted
in histograms whose corresponding distributions can be in-
terpreted as the probability distributions of the unknowns.
As opposed to the sensitivity analysis discussed below, this
treatment allows one to obtain detailed information on the
error distribution.

Sensitivity Analysis
Instead of calculating the error bars on the solutions ex-

plicitly, one can employ techniques from linear algebra to
analyze how sensitive the linear system of equations 𝐴x = b
is to perturbation terms 𝛿𝐴 and 𝛿b. The key parameter that
measures sensitivity is the condition number of 𝐴 denoted
by 𝜅(𝐴) where:

𝜅(𝐴) = 𝜎max (𝐴)
𝜎min(𝐴)

(2)

with 𝜎max (𝐴) and 𝜎min (𝐴) being the largest and smallest
non-zero singular value 𝐴 respectively. We refer the reader
to Ref. [2, 3] for details. Upon linearizing Eq. (1) in 𝛿, an
expression can be derived to bound the relative error of the
the solution given the relative error in 𝐴 and b:

∥𝛿x∥2
∥x∥2

≤𝜅(𝐴)2 ∥r∥2
∥𝐴x∥2

∥𝛿𝐴∥2
∥𝐴∥2

+ 𝜅(𝐴)
(
∥b∥2
∥𝐴x∥2

∥𝛿b∥2
∥b∥2

+ ∥𝛿𝐴∥2
∥𝐴∥2

)
(3)

where r ≡ 𝐴x−b is the residual vector, and ∥.∥2 denotes the
Euclidean norm (i.e. 𝐿2 norm) and the associated induced
norm for vectors and matrices respectively.

Given the dependence of relative errors in x on 𝜅(𝐴) in
Eq. (3), one can use 𝜅(𝐴) to compare which system’s so-
lutions will have a sharper probability distribution. This

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-THZBB6

06: Beam Instrumentation, Controls, Feedback and Operational Aspects
THZBB6

971

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



can be done without explicitly calculating the error values
and, assuming ∥𝛿𝐴∥2 /∥𝐴∥2 and ∥𝛿b∥2 /∥b∥2 are constant
at different scan parameters, without even knowing the mag-
nitudes of the error sources.

ERROR MINIMIZATION IN Q-SCANS
Since the condition number 𝜅(𝐴) is a parameter that

quantifies errors, the question becomes how one can set
quadrupole scan parameters such that the 𝜅(𝐴) is small in
the resulting system of linear equations 𝐴x = b. Using
the condition number to guide error minimization of beam
measurements is inspired by the work at the GSI Helmholtz
Centre for Heavy Ion Research (GSI) [4, 5]. However, GSI
studies did not appear to analyze how to choose scan param-
eters such that the condition number is minimized.

A simple estimate shows that an exhaustive search over
all possible sets of scan parameters for the minimum 𝜅(𝐴)
is impractical. Suppose there are two “knobs” (e.g. focusing
strengths in a quadrupole doublet) where each knob can
attain 10 values, thus giving 100 possible settings in total.
To choose a set of scan parameters for four measurements,
the number of possible combinations equal:(

100
4

)
=

100!
4! × 96!

≈ 4 × 106.

For scans with more knobs and more measurements, the
number can be orders of magnitude larger. It would be very
computationally inefficient to build all possible coefficient
matrices 𝐴, compute their singular values, and select the
one with the smallest condition number 𝜅(𝐴).

Therefore, one has to rely on other ideas to efficiently
obtain a set of scan parameters. A group at the Paul Scherrer
Institute (PSI) proposed choosing quadrupole parameters
that correspond to discrete steps in particle phase advance
between the measurement and reconstruction point [6]. How-
ever, the phase advance describes rotation in normal coordi-
nates, whereas the actual rotation in phase-space depends
on the orientation of the invariant Courant-Snyder ellipse,
which is different for each focusing setting.

Projection Angle
We believe that a viewpoint in terms of projection is direct

and beneficial. Quadrupole settings alter the linear map from
𝑧𝑖 to 𝑧 𝑓 and in effect provide a different projection of the
initial phase-space onto the 1D spatial measurements of the
beam profile monitor. If we choose a set of measurements
which correspond to a diverse range of projection angles,
the corresponding matrix 𝐴 should have a low condition
number which reduces uncertainties in the solution.

The projection angle corresponding to the 𝑥-plane linear
map of a quadrupole transport line can be found as follows.
The initial(𝑖) and final ( 𝑓 ) phase-space coordinates are re-
lated by: (

𝑥 𝑓

𝑥 ′
𝑓

)
=

(
𝑚11 𝑚12
𝑚21 𝑚22

) (
𝑥𝑖
𝑥 ′
𝑖

)
(4)
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Figure 1: Linear map transforms a vertical strip in 𝑥 𝑓 -𝑥 ′
𝑓

phase-space into a slanted strip in 𝑥𝑖-𝑥 ′𝑖 phase-space, thus
illustrating how the final spatial profile is a projection of the
initial phase-space distribution from an angle 𝜃.

Therefore, the line 𝑥 𝑓 = 𝑎0 in 𝑥 𝑓 -𝑥 ′
𝑓

phase-space, where 𝑎0
is a constant, becomes:

𝑚11𝑥𝑖 + 𝑚12𝑥
′
𝑖 = 𝑎0 (5)

whose slope is given by:

tan 𝜃 = −𝑚11
𝑚12

(6)

Hence 𝜃 corresponds to the projection angle on the initial
phase-space. The argument is illustrated by Fig. 1. Here
we employ normalized dimensionless coordinates in mea-
suring 𝑥 and 𝑥 ′ (e.g. normalization by 1 mm and 1 mrad
respectively).

FRIB FRONT END EXAMPLE
To test the implementation of the methods developed, two

quadrupole scans were conducted using the first profile mon-
itor at the FRIB Front End with a 12 keV/u Ar9+ beam. A
schematic of the relevant beam line section is shown in Fig. 2.
There are two electrostatic quadrupole doublets between the
measurement and reconstruction points. The voltages (+ de-
notes focusing in the 𝑥-plane) applied to the four quadrupoles
are listed in Table 1. The parameters in Scan 1 is typical
of how quadrupole scans were usually performed where
only the focusing strength of the quadrupole immediately
upstream of the profile monitor is varied. The parameters
in Scan 2 were chosen using the techniques described in the
section above to sample the initial distribution from a wide
range of projection angles. The projection angles on the
initial phase-space corresponding to each scan are shown in
Fig. 3. Note that Scan 2 has a much wider spread of angles
than Scan 1.

The performance of Scan 1 and Scan 2 in beam moment
measurements are compared. phase-space moments mea-
sured at an upstream Allison scanner is propagated to the
reconstruction location to serve as a benchmark. Hard edge
equivalent transfer matrices are applied for the quadrupoles.
Beam moments are calculated from a system of linear equa-
tions where the coefficient matrix 𝐴 depends on the choice
of scan parameters. In the current example, the condition
number 𝜅(𝐴) as defined in in Eq. (2) equals 466 and 14.5
for Scan 1 and Scan 2 respectively. With this > 30-fold
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Table 1: Quadrupole Parameters for Scan 1 and Scan 2

Scan 1 Scan 2
Measurement 1 2 3 4 5 6 1 2 3 4 5

𝑉1 (V) -2657 -2657 -2657 -2657 -2657 -2657 -500 -1500 -4000 -4000 -4500
𝑉2 (V) 4513 4513 4513 4513 4513 4513 3000 4000 4500 5500 4500
𝑉3 (V) -4295 -4295 -4295 -4295 -4295 -4295 -4500 -4500 -4500 -3000 -4500
𝑉4 (V) 300 1300 2300 3300 4300 5300 4000 4000 4000 500 3500

Figure 2: Beam line section containing the first profile mon-
itor at the FRIB Front End. The profile monitor is located at
the position designated by f and the beam was reconstructed
at position i. Green blocks denote identical (Q7 type) elec-
trostatic quadrupoles.
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Figure 3: Projection angles on the initial phase-space corre-
sponding to quadrupole scan parameters in Table 1.

difference in the condition number, the errors in Scan 1 are
expected to be much larger than those in Scan 2. This is
verified by applying random errors to measurement results
and solving for the emittance in each case. Histograms cor-
responding to 10000 perturbed solutions in each case (with
larger applied errors in Scan 2) are plotted in Fig. 4, where
the standard deviation of normalized rms 𝑥-emittance 𝜀𝑥 is
0.029 mm-mrad and 0.005 mm-mrad for Scan 1 and Scan
2 respectively. Despite the fact that applied errors for Scan
1 are 10× smaller than those for Scan 2, the measurement
errors in Scan 1 are 6× larger. This demonstrates a diverse
choice of projection angles is a viable methodology for re-
ducing quadrupole scan errors.

CONCLUSION
Errors in Q-scans can be minimized by lowering the condi-

tion number 𝜅(𝐴) in the system of linear equations 𝐴x = b.
Qualitative methodology based on projection angles has
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Figure 4: Histograms of the normalized rms 𝑥-emittance
𝜀𝑥 with random errors applied to the measurement results.
The applied errors have a truncated Gaussian distribution
where 3𝜎 = 1% for Scan 1 and 3𝜎 = 10% for Scan 2.

been proposed to minimize 𝜅(𝐴) and preliminary studies at
the FRIB front end confirmed its efficacy. The method is
being applied to develop an application for optimized auto-
mated Q-scan parameter selection at FRIB, results will be
reported in the future. More rigorous arguments on which
choice of coordinate system is optimal and how evenly dis-
tributed projection angles ensure low sensitivity to errors, as
well as how the method can be extended to 4D phase-space,
will be presented in an upcoming paper.
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