Author: Zuhoski, P.
Paper Title Page
MOPLM01 Alternative Injection Schemes to the NSLS-II Using Nonlinear Injection Magnets 91
 
  • R.P. Fliller, III, G. Bassi, A. Blednykh, C. Hetzel, V.V. Smaluk, C.J. Spataro, P. Zuhoski
    BNL, Upton, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The NSLS-II storage ring uses the standard four bump injection scheme to inject beam off axis. BESSY and MAX IV are now using a pulsed multipole magnet as an injection kicker. The injected beam sees a field off axis for injection while the stored beam experiences no field on the magnet axis. The principle advantage of using a pulsed multipole for injection is that the stored beam motion is greatly reduced since the field on axis is negligible. The number of pulsed magnets is reduced from five in the nominal scheme (septum and four bumps) to two or three thereby reducing the possible failure modes. This also eliminates the need to precisely match the pulse shapes of four dipole magnets to achieve minimal stored beam motion outside of the bump. In this paper we discuss two schemes of injecting into the NSLS-II using a pulsed multipole magnet. The first scheme uses a single pulsed multipole located in one cell downstream of the injection septum as the injection kicker. The second scheme uses two pulsed multipoles in the injection straight to perform the injection. We discuss both methods of injection and compare each method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM01  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)