Author: Wu, Y.H.
Paper Title Page
TUPLM07 First Experimental Observations of the Plasma-Cascade Instability in the CeC PoP Accelerator 379
TUPLM04   use link to see paper's listing under its alternate paper code  
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • Y.C. Jing, V. Litvinenko, J. Ma, I. Pinayev, G. Wang, Y.H. Wu
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Preservation of the beam quality is important for attaining the desirable properties of the beam. Collective effects can produce an instability severely degrading beam emittance, momentum spread and creating filamentation of the beam. Microbunching instability for beams traveling along a curved trajectory, and space charge driven parametric transverse instabilities are well-known and in-depth studied. However, none of the above include a microbunching longitudinal instability driven by modulations of the transverse beam size. This phenomenon was observed for the first time during the commissioning of the CeC PoP experiment. Based on the dynamics of this instability we named it a Plasma-Cascade Instability (PCI). PCI can strongly intensify longitudinal micro-bunching originating from the beam’s shot noise, and even saturate it. Resulting random density and energy microstructures in the beam can become a serious problem for generating high quality electron beams. On the other hand, such instability can drive novel high-power sources of broadband radiation. In this paper we present our experimental observations of the PCI and the supporting results of the numerical simulations.  
poster icon Poster TUPLM07 [17.319 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM07  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)