Author: Tao, M.J.
Paper Title Page
MOYBB3 Progress in Nb3Sn SRF Cavities at Cornell University 37
SUPLS08   use link to see paper's listing under its alternate paper code  
 
  • R.D. Porter, H. Hu, M. Liepe, N.A. Stilin, Z. Sun, M.J. Tao
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Niobium-3 Tin (NbSn) is the most promising alternative material for next-generation SRF cavities. The material can obtain high quality factors (> 1010) at 4.2 K and could theoretically support ~ 96 MV/m operation of a TESLA elliptical style cavity. Current Nb3Sn cavities made at Cornell University achieve high quality factors but are limited to about 17 MV/m in CW operation due to the presence of a surface defect. Here we examine recent results on studying the quench mechanism and propose that surface roughness is a major limiter for accelerating gradients. Furthermore, we discuss recent work on reducing the surface roughness including chemical polishing, modification of material growth, and tin electroplating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBB3  
About • paper received ※ 02 September 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)