Author: Shishlo, A.P.
Paper Title Page
TUYBB2 Manipulating H Beams with Lasers 309
 
  • A. Rakhman, A.V. Aleksandrov, S.M. Cousineau, T.V. Gorlov, Y. Liu, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
In recent years lasers have been playing a vital role in many H− beam measurements and experiments. This talk will review current state of development of various applications using lasers for manipulating H− ion beams in accelerators. A wide range of applications will be reviewed such as beam diagnostics, laser-assisted charge-exchange injection, generation of arbitrary H0 pulse patterns and others. An overview of ongoing developments and prospects for other laser H− beam interactions will also be given.
 
slides icon Slides TUYBB2 [16.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBB2  
About • paper received ※ 28 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBB5 A Crab-Crossing Scheme for Laser-Ion Beam Applications 639
 
  • A.V. Aleksandrov, S.M. Cousineau, T.V. Gorlov, Y. Liu, A. Rakhman, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Lasers have recently been used in many applications to H beams, including laser charge exchange, laser wire scanners, and laser temporal pulse patterning. The H beam in these applications has wide variation ofμpulse length width dependence on focusing of the RF cavities, energy spread of the beam, and space charge forces. Achieving the required laser pulse length for complete overlap with the H can be challenging in some scenarios when available laser power constrained. The scheme proposed here utilizes a crab-crossing concept between the laser and the ion beam to achieve overlap of a short laser pulse with an arbitrarily long H beam pulse. An experiment to test the hypothesis in the context of H charge exchange is described.  
slides icon Slides WEYBB5 [5.201 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB5  
About • paper received ※ 30 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)