Paper | Title | Page |
---|---|---|
WEXBA2 | Recent Results and Opportunities at the IOTA Facility | 599 |
|
||
The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling. | ||
![]() |
Slides WEXBA2 [12.702 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2 | |
About • | paper received ※ 31 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLH19 | Record Fast Cycling Accelerator Magnet Based on High Temperature Superconductor | 845 |
|
||
Funding: Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 We report on the prototype High Temperature Superconductor (HTS) based accelerator magnet capable to operate at 12 T/s B-field ramping rate with a very low supporting cryogenic cooling power thus indicating a feasibility of its application in large accelerator requiring high repetition rate and high average beam power. The magnet is designed to simultaneously accelerate two particle beams in the separate beam gaps energized by a single conductor. The design, construction and the power test arrangement of a prototype of this fast-cycling HTS based accelerator magnet are presented. As example, the cryogenic power loss limit measured in the magnet power test is discussed in terms of feasibility of application of such a magnet for the construction of an 8 GeV dual-beam proton booster accelerator. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH19 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |