Author: Shi, J.
Paper Title Page
WEPLM67 Optimization of a Single-Cell Accelerating Structure for Rf Breakdown Test With Short Rf Pulses 747
 
  • M.M. Peng, J. Shi
    TUB, Beijing, People’s Republic of China
  • M.E. Conde, G. Ha, C.-J. Jing, W. Liu, J.G. Power, J. Seok, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  RF breakdown is one of the major limitations to achieve high gradient acceleration for future structure-based normal conducting linear colliders. Previous statistic research shows that the breakdown rate is proportional to Ea30 * tp5, which indicates that the accelerating gradient Ea could be improved by using shorter RF pulses (tp). An X-band 11.7~GHz metallic single-cell structure has been designed for RF breakdown study up to 273~MV/m using short pulses (~3ns) generated by a 400~MW power extractor at Argonne Wakefield Accelerator (AWA) facility. The structure has also been scaled to 11.424~GHz for the long pulse (100-1500~ns) breakdown study driven by a klystron and a pulse compressor at Tsinghua X-band High Power Test-stand (TPoT-X), with the gradient up to 246~MV/m with 200~MW input power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM67  
About • paper received ※ 05 September 2019       paper accepted ※ 26 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM68 Design of a Dielectric-Loaded Accelerator for Short Pulse High Gradient Research 751
 
  • M.M. Peng, J. Shi
    TUB, Beijing, People’s Republic of China
  • M.E. Conde, G. Ha, C.-J. Jing, W. Liu, J.G. Power, J. Seok, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The short-pulse two-beam acceleration approach is a promising candidate to meet the cost and luminosity requirements for future linear colliders. Dielectric-loaded structure has been intensely investigated for this approach because of its low fabrication cost, low RF loss, and potential to withstand GV/m gradient. An X-band 11.7~GHz dielectric-loaded accelerator (DLA) has been designed for high power test with short RF pulses (3~ns) generated from a power extractor driven by high charge bunches at Argonne Wakefield Accelerator (AWA) facility. The gradient is expected to be over 100~MV/m with the maximum input power of 400~MW.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM68  
About • paper received ※ 05 September 2019       paper accepted ※ 27 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)