Author: Rybarcyk, L.
Paper Title Page
MOPLO18 Thermal Analysis of the LANSCE H+ RFQ Test Stand Faraday Cup 274
 
  • E.N. Pulliam, I. Draganić, J.L. Medina, J.P. Montross, J.F. O’Hara, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) op-erates one of the nation’s most powerful linear accelera-tors (LINAC). Currently the facility utilizes two 750 keV Cockcroft-Walton (CW) based injectors for transporting H+ and H beams into the 800 MeV accelerator. A Radio Frequency Quadrupole (RFQ) design is being proposed to replace the aged CW injectors. An important component of the RFQ Test Stand is the Faraday cup that is assem-bled at the end of the Low Energy Beam Transport (Phase 1 LEBT) and Medium Energy Beam Transport (Phase 3 MEBT). The Faraday cup functions simultaneously as both a beam diagnostic and as a beam stop for each of the three project phases. This paper describes various aspects of the design and analysis of the Faraday cup. The first analysis examined the press fit assembly of the graphite cone and the copper cup components. A finite element analysis (FEA) evaluated the thermal expansion proper-ties of the copper component, and the resulting material stress from the assembly. Second, the beam deposition and heat transfer capability were analyzed for LEBT and MEBT beam power levels. Details of the calculations and analysis will be presented.  
poster icon Poster MOPLO18 [3.399 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO18  
About • paper received ※ 27 August 2019       paper accepted ※ 25 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH20 Modeling of H Ion Source at LANSCE 848
 
  • N.A. Yampolsky, I. Draganić, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the US Department of Energy under Contract Number DE-AC52-06NA25396
We report on the progress in modeling performance of the H ion source at LANSCE. The key aspect we address is the lifetime of the tungsten filament. The lifetime depends on multiple parameters of the ion source and can dramatically vary in different regimes of operation. We use the multiphysics approach to model the performance of the ion source. The detailed analysis has been made to recognize key physical processes, which affect the degradation of the filament. The analysis resulted in the analytical model, which includes relevant processes from the first principles. The numerical code based on this model has been developed and benchmarked. The results of the modeling show good agreement with experimental data. As a result, the developed model allows predicting the performance of the ion source in various regimes of operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH20  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)