Author: Rosenzweig, J.B.
Paper Title Page
WEPLO19 Probing Multiperiod Plasma Response Regimes using Single Shot Wakefield Measurements 878
 
  • R.J. Roussel, G. Andonian, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • M.E. Conde, D.S. Doran, G. Ha, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • J. Seok
    UNIST, Ulsan, Republic of Korea
 
  Funding: DE-SC0017648
Systematic differences between the linear and nonlinear regimes of plasma wakefield acceleration from electron beams are manifested in the plasma response. Typically, the ratio of peak beam density to nominal plasma density determines operation in the linear or nonlinear regime. Previous reports have shown that a the cross-over into the nonlinear regime is associated with an increase in the wakefield amplitude, as well as sawtooth-like shape. In this paper, we present preliminary measurements of quasi-nonlinear wakefields driven by a linearly ramped beam, with a maximum charge close to the unperturbed plasma density. We also demonstrate nonlinear wakefield behavior in a probe bunch using a single shot, multi-period wakefield measurement and its dependency on plasma density.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO19  
About • paper received ※ 31 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLO20 High Gradient High Efficiency C-Band Accelerator Structure Research at LANL 882
 
  • E.I. Simakov, A.W. Garmon, T.C. Germann, M.F. Kirshner, F.L. Krawczyk, J.W. Lewellen, D. Perez, G. Wang
    LANL, Los Alamos, New Mexico, USA
  • A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: Los Alamos National Laboratory LDRD Program
This poster will report on the status of the new high gradient C-band accelerator project at LANL. Modern applications such as X-ray sources require accelerators with optimized cost of construction and operation, naturally calling for high-gradient acceleration. Our goal is to use a multi-disciplinary approach that includes accelerator design, molecular dynamics simulations, and advanced manufacturing to develop high gradient, high efficiency RF structures for both compact and facility-size accelerator systems. We considered common operation frequencies for accelerators and identified C-band as the optimal frequency band for high gradient operations based on achievable gradients and means to control wakefields. We are putting together a high gradient C-band test facility that includes a 50 MW Toshiba klystron and cryo-coolers for operating copper NCRF accelerator cavities at long pulse duration. We plan to conduct high gradient testing of the optimized RF structures made of copper and novel copper alloys. LANL modeling capabilities will be used to systematically study the formation of breakdown precursors at high fields to develop basic theoretical understanding of the breakdown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO20  
About • paper received ※ 27 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)