Paper | Title | Page |
---|---|---|
MOPLM18 | Design of the 2-Stage Laser Transport for the Low Energy RHIC Electron Cooling (LEReC) DC Photogun | 144 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The electron beam for the recently constructed Low Energy RHIC electron Cooler (LEReC) at Brookhaven National Laboratory is generated by a high-power fiber laser illuminating a photocathode. The pointing stability of the low-energy electron beam, which is crucial to maintain within acceptable limits given the long beam transport, is highly dependent on the center-of-mass (CoM) stability of the laser spot on the photocathode. For reasons of accessibility during operations, the laser itself is located outside the accelerator tunnel, leading to the need to propagate the laser beam 34 m via three laser tables to the photocathode. The challenges to achieving the required CoM stability of 10 microns on the photocathode thus requires mitigation of vibrations along the transport and of weather- and season-related environmental effects, while preserving accessibility and diagnostic capabilities with proactive design. After successful commissioning of the full transport in 2018/19, we report on our solutions to these design challenges. LEReC Photocathode DC Gun Beam Test Results - D. Kayran Conference: C18-04-29, p.TUPMF025 Commissioning of Electron Accelerator LEReC for Bunch Beam Cooling - D.Kayran, NAPAC19 |
||
![]() |
Poster MOPLM18 [1.970 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM18 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |