Author: Kelley, M.J.
Paper Title Page
WEPLM52 Recent Developments of Nb3Sn at Jefferson Lab for SRF Accelerator Application 713
SUPLS05   use link to see paper's listing under its alternate paper code  
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
The desire to reduce the construction and operating costs of future SRF accelerators motivates the search for alternative, higher-performing materials. Nb3Sn (Tc ~ 18.3 K and Hsh ~ 425 mT) is the front runner. However, tests of early Nb3Sn-coated cavities encountered strong Q-slopes limiting the performance. Learnings from studies of coated materials related to cavity performance prompted significant changes to the coating process. It is now possible to routinely produce slope-free single-cell cavities having Q0 ≥ 2×1010 at 4 K and > 4×1010 at 2 K up to the accelerating gradient in excess of 15 MV/m at its best. Obtaining similar results in five-cell cavities is a current goal to test them under an accelerator environment. This contribution discusses recent developments at Jefferson Lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM52  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)