Author: Ives, R.L.
Paper Title Page
WEZBA6 A 100 kW 1.3 GHz Magnetron System with Amplitude and Phase Control 656
 
  • M.E. Read, T. Bui, G. Collins, R.L. Ives
    CCR, San Mateo, California, USA
  • B.E. Chase, J. Reid
    Fermilab, Batavia, Illinois, USA
  • J.R. Conant, C.M. Walker
    CPI, Beverley, Massachusetts, USA
 
  Funding: United States Department of Energy Grant No. DE-SC0011229.
Calabazas Creek Research, Inc., Fermilab, and Communications & Power Industries, LLC, developed a 100 kW peak, 10 kW average, 1.3 GHz, magnetron-based, RF system for driving accelerators. Efficiency varied between 81% and 87%. Phase locking uses a novel approach that provides fast amplitude and phase control when coupled into a superconducting accelerator cavity [1]. The system was successfully tested at Fermilab and produced 100 kW in 1.5 ms pulses at a repetition rate of 2 pps. A locking bandwidth of 0.9 MHz was achieved with a drive signal of 269 W injected through a 4 port circulator. The phase locking signal was 25 dB below the magnetron output power. The spectrum of the phase locked magnetron was suitable for driving accelerator cavities. Phase modulation was demonstrated to 50 kHz (the limit of the available driver source). The average power was limited by available conditioning time. Scaling indicates 42 kW of average power should be achievable. Estimated cost is less than $1/Watt of delivered RF power, exclusive of power supplies or modulators. System design and performance measurements will be presented.
[1] B. Chase, R. Pasquinelli, E. Cullerton, P. Varghese, "Precision Vector Control of a Superconducting RF Cavity driven by an Injection Locked Magnetron," Jou. of Instrumentation, Vol. 10 March 2015.
 
slides icon Slides WEZBA6 [2.515 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEZBA6  
About • paper received ※ 27 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM57 200 kW, 350 - 700 MHz RF Sources using Multiple Beam Triodes 724
 
  • R.L. Ives, T. Bui, D. Marsden, M.E. Read
    CCR, San Mateo, California, USA
  • B. Henderson, L. Higgins, R. Ho
    CPI, Palo Alto, California, USA
 
  Funding: U.S. Department of Energy Grant No. DE-SC0018838
Calabazas Creek Research, Inc. and Communications & Power Industries, LLC are developing multiple beam triodes to produce more than 200 kW of RF power at extremely low cost and efficiencies exceeding 85%. RF power is achieved by installing the triode inside coaxial input and output cavities at the desired frequency. The multiple beam triodes developed in this program will provide RF power from 350 MHz to 700 MHz using the appropriate, tuned, resonant cavities. This program is using eight grid-cathode assemblies to achieve 200 kW with a target efficiency exceeding 80%. A 350 MHz RF source would be approximately 36 inches high, 18 inches in diameter and weigh approximately 150 pounds. This is significantly smaller than any other RF source at this frequency and power level. The gain is limited to approximately 14 dB, so a single beam triode-based source will serve as a driver. The combined cost and efficiency will still exceed the performance of other comparable RF sources, including solid state sources. Design issues, include grid cooling, uniformity of RF electric fields on the grids, and efficiency, will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM57  
About • paper received ※ 27 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)