Paper | Title | Page |
---|---|---|
TUZBB2 | Reaching Low Emittance in Synchrotron Light Sources by Using Complex Bends | 352 |
TUPLM30 | use link to see paper's listing under its alternate paper code | |
|
||
All modern projects of low-emittance synchrotrons follow Multi-Bend Achromat approach*. The low emittance is realized by arranging small horizontal beta-function and dispersion in the bending magnets, the number of which varies from 4 to 9 magnets per cell. We propose an alternative way to reach low emittance by use of a lattice element that we call "Complex Bend"**, instead of regular dipole magnets. The Complex Bend is a new concept of bending magnet consisting of a number of dipole poles interleaved with strong alternate focusing so as to maintain the beta-function and dispersion oscillating at very low values. The details of Complex Bend, considerations regarding the choice of optimal parameters, thoughts for its practical realization and use in low-emittance lattices, are discussed.
* MBA: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.2446&rep=rep1&type=pdf ** Complex Bend: Phys. Rev. Accel. Beams 21, 100703 (2018) |
||
![]() |
Slides TUZBB2 [7.894 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB2 | |
About • | paper received ※ 01 September 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLS04 | Re-Evaluation of the NSLS-II Active Interlock Window | 456 |
|
||
Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy The NSLS-II Active Interlock is the system which protects the NSLS-II Storage Ring vacuum chamber from damage due to synchrotron radiation. The Active Interlock measures the beam position and angle at all insertion devices and issues a beam dump if the beam is outside of the pre-defined window. The window is determined by thermal analysis of vacuum apertures and considers the effects of local magnets such as canting magnets, etc. Recently, it was realized that the insertion device correction coils where not considered in the initial evaluation of the envelope. The purpose of these coils is to correct for the orbit deviations caused by imperfections in the insertion devices that steer the beam. The usual effect is to negate any angle induced by the device, however, if the coil is not set properly the beam may have a larger angle than permitted by the Active Interlock even though the angle calculation does not show it. In this paper we discuss the effect of the insertion device coils on the electron beam and the steps taken to account for this effect in the Active Interlock. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS04 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 16 November 2020 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |