Author: Eremeev, G.V.
Paper Title Page
WEPLM52 Recent Developments of Nb3Sn at Jefferson Lab for SRF Accelerator Application 713
SUPLS05   use link to see paper's listing under its alternate paper code  
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
The desire to reduce the construction and operating costs of future SRF accelerators motivates the search for alternative, higher-performing materials. Nb3Sn (Tc ~ 18.3 K and Hsh ~ 425 mT) is the front runner. However, tests of early Nb3Sn-coated cavities encountered strong Q-slopes limiting the performance. Learnings from studies of coated materials related to cavity performance prompted significant changes to the coating process. It is now possible to routinely produce slope-free single-cell cavities having Q0 ≥ 2×1010 at 4 K and > 4×1010 at 2 K up to the accelerating gradient in excess of 15 MV/m at its best. Obtaining similar results in five-cell cavities is a current goal to test them under an accelerator environment. This contribution discusses recent developments at Jefferson Lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM52  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM63 Development of a Secondary Sn Source for Nb3Sn Coating of Half-Wave Coaxial Resonator 735
SUPLS09   use link to see paper's listing under its alternate paper code  
 
  • J.K. Tiskumara, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • G.V. Eremeev
    JLab, Newport News, Virginia, USA
  • U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Superconducting thin films have the potential of reducing the cost of particle accelerators. Among the potential materials, Nb3Sn has a higher critical temperature and higher critical field compared to niobium. Sn vapor diffusion method is the preferred technique to coat niobium cavities. Although there are several thin-film-coated basic cavity models that are tested at their specific frequencies, the Half-wave resonator could provide us data across frequencies of interest for particle accelerators. With its advanced geometry, increased area, increased number of ports and hard to reach areas, the half-wave resonator needs a different coating approach, in particular, a development of a secondary Sn source. We are commissioning a secondary Sn source in the coating system and expand the current coating system at JLab to coat complex cavity models.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM63  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)