Paper | Title | Page |
---|---|---|
MOPLO19 | Test Results of PIP2IT MEBT Vacuum Protection System | 278 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics The central part of PIP-II program of upgrades proposed for the Fermilab injection complex is an 800 MeV, 2 mA, CW-compatible SRF linac. Acceleration in superconducting cavities begins from a low energy of 2.1 MeV, so that the first cryomodule, Half Wave Resonator (HWR) borders the warm Medium Beam Transport (MEBT) line. To minimize the amount of gas that may enter the SRF linac in a case if a vacuum failure occurs in the warm front end, a vacuum protection system is envisioned to be used in the PIP-II MEBT. It features a fast closing valve with two sensors and a differential pumping insert. The system prototype is installed in the PIP-II Injector Test (PIP2IT) accelerator and recently is successfully tested in several modes modelling the vacuum failures. The report presents the design of the vacuum protection system and results of its tests. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO19 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLH02 | Experience with Long-Pulse Operation of the PIP2IT Warm Front End | 803 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics The warm front end of the PIP2IT accelerator, assembled and commissioned at Fermilab, consists of a 15 mA DC, 30 keV H− ion source, a 2-m long Low Energy Beam Transport (LEBT) line, a 2.1-MeV, 162.5 MHz CW RFQ, followed by a 10-m long Medium Energy Beam Transport (MEBT) line. A part of the commissioning efforts involves operation in regimes where the average beam power in this front end emulates the operation of the proposed PIP-II accelerator, which will have a duty factor of 1.1% or above. The maximum achieved power is 5 kW (2.1 MeV x 5 mA x 25 ms x 20 Hz). This paper describes the difficulties encountered and some of the solutions that were implemented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH02 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 01 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |