Paper | Title | Page |
---|---|---|
MOOHC2 | The US Electron Ion Collider Accelerator Designs | 1 |
|
||
With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D. | ||
![]() |
Slides MOOHC2 [14.774 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYBB5 | Design and Analysis of a Halo-Measurement Diagnostics | 322 |
SUPLS10 | use link to see paper's listing under its alternate paper code | |
TUPLS15 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear physics under contract DE-AC05-06OR23177 and DE-AC02-07CH11359. A large dynamical-range diagnostics (LDRD) design at Jefferson Lab will be used at the FAST-IOTA injector to measure the transverse distribution of halo associated with a high-charge electron beam. One important aspect of this work is to explore the halo distribution when the beam has significant angular momentum (i.e. is magnetized). The beam distribution is measured by recording radiation produced as the beam impinges a YAG:Ce screen. The optical radiation is split with a fraction directed to a charged-couple device (CCD) camera. The other part of the radiation is reflected by a digital micromirror device (DMD) that masks the core of the beam distribution. Combining the images recorded by the two cameras provides a measurement of the transverse distribution with over a large dynamical range. The design and analysis of the optical system will be discussed including optical simulation using SRW and the result of a mockup experiment to test the performances of the system will be presented. |
||
![]() |
Slides TUYBB5 [3.013 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBB5 | |
About • | paper received ※ 02 September 2019 paper accepted ※ 13 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLM20 | Generation of High-Charge Magnetized Electron Beams Consistent With JLEIC Electron Cooling Requirements | 414 |
SUPLM21 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear physics under contract DE-AC05-06OR23177 and DE-AC02-07CH11359. The proposed Jefferson Lab Electron-Ion Collider (JLEIC), currently under design, relies on electron cooling in order to achieve the desired luminosity. This includes an electron beam with >55 Mev, 3.2 nC bunches that cools hadron beams with energies up to 100 GeV. To enhance the cooling, the electron beam must be magnetized with a specific eigen-emittance partition. This paper explores the use of the Fermilab Accelerator Science and Technology (FAST) facility to demonstrate the generation of an electron beam with parameters consistent with those required in the JLEIC high-energy cooler. We demonstrate via simulations the generation of the required electron-beam parameters and perform a preliminary experiment to validate FAST capabilities to produce such beams. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM20 | |
About • | paper received ※ 07 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLO04 | The Latest Code Development Progress of JSPEC | 539 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The JLab Simulation Package on Electron Cooling (JSPEC) is an open source software developed at Jefferson Lab for electron cooling and intrabeam scattering (IBS) simulations. IBS is an important factor that leads to the growth of the beam emittance and hence the reduction of the luminosity in a high density ion collider ring. Electron cooling is an effective measure to overcome the IBS effect. Although JSPEC is initiated to fulfill the simulation needs in JLab Electron Ion Collider project, it can be used as a general design tool for other accelerators. JSPEC provides various models of the ion beam and the electron beam and it calculates the expansion rate and simulates the evolution of the ion beam under the IBS and/or electron cooling effect. In this report, we will give a brief introduction of JSPEC and then present the latest code development progress of JSPEC, including new models, algorithms, and the user interface. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO04 | |
About • | paper received ※ 20 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |