Paper | Title | Page |
---|---|---|
TUPLM01 | Experimental Studies of Resonance Structure Dynamics With Space Charge | 372 |
SUPLM04 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Funding for this project is provided by DOE-HEP award #DE-SC0010301 Space charge is one of the fundamental limitations for next generation high intensity circular accelerators. It can lead to halo growth as well as beam loss, and affect resonance structure in ways not completely understood. We employ the University of Maryland Electron Ring (UMER), a circular 10 keV storage machine, to experimentally study the structure of betatron resonances for beams of varying degrees of space charge intensity. Experimental techniques such as tune scans and frequency maps are employed. Results are also compared to computer simulations using the WARP code. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM01 | |
About • | paper received ※ 26 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLM03 | Adjoint Approach to Accelerator Lattice Design | 376 |
TUPLM02 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Supported by USDoE DESC0010301 Accelerator lattices are designed using computer codes that solve the equations of motion for charged particles in both prescribed and self-consistent fields. These codes are run in a mode in which particles enter a lattice region, travel for a finite distance, and have their coordinates recorded to assess various figures of merit (FoMs). The lattice is then optimized by varying the positions and strengths of the focusing elements. This optimization is done in a high dimensional parameter space, requiring multiple simulations of the particle trajectories to determine the dependence of the confinement on the many parameters. Sophisticated algorithms for this optimization are being introduced. However, the process is still time consuming. We propose to alter the design process using "adjoint" techniques [*]. Incorporation of an "adjoint" calculation of the trajectories and self-fields can, in several runs, determine the gradient in parameter space of a given FoM with respect to all lattice parameters. It includes naturally self-fields and can be embedded in existing codes such as WARP or Vorpal. The theoretical basis for the method and several applications will be presented. * T. Antonsen, D. Chernin, J. Petillo, Adjoint Approach to Beam Optics Sensitivity Based on Hamiltonian Particle Dynamics, 2018 arXiv:1807.07898, Physics of Plasmas 26, 013109 (2019). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM03 | |
About • | paper received ※ 23 August 2019 paper accepted ※ 13 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |