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Abstract

During the course of the last decade, traveling wave accel-
erating structures for a future Linear Collider have been the
object of intense R&D efforts. An important problem is the
efficient computation of the long range wakefield with the
ability to include small alignment and tuning errors. To
that end, SLAC has developed an RF circuit model with
a demonstrated ability to reproduce experimentally mea-
sured wakefields. The wakefield computation involves the
repeated solution of a deterministic system of equations
over a range of frequencies. By taking maximum advan-
tage of the sparsity of the equations, we have achieved sig-
nificant performance improvements. These improvements
make it practical to consider simulations involving an en-
tire linac (∼ 103 structures). One might also contemplate
assessing, in real time, the impact of fabrication errors on
the wakefield as an integral part of quality control.

1 INTRODUCTION

During the course of the last decade, SLAC has been con-
ducting R&D on new generations of accelerating structures
for a future machine, the Next Linear Collider (NLC). The
culmination of this work is the Damped Detuned Struc-
ture (DDS). Since it is difficult to dissipate deflecting mode
power without also dissipatingaccelerating mode power,
this structure achieves high efficiency (shunt impedance)
by relying primarily on detuning to produce favorable phas-
ing of the dipolemodes to mitigate the dipolesum wake. To
prevent the partial re-coherence of the long range wake, a
small amount of damping is provided by extracting dipole
mode energy through four manifolds which also serve as
pumping slots.

A linear collider is a complex system and detailed nu-
merical simulations are essential to understand the impact
of different random and/or systematic structure fabrication
errors on beam quality. Assuming a (loaded) gradient of
50 MV/m and a length of 2 m, each of the two arms of a 1
TeV in the center-of-mass NLC would be comprised of ap-
proximately1000 structures. To simulate the effect of fab-
rication errors on emittance growth, one needs to compute
one wake per structure; consequently, there is considerable
interest in performing these computations as efficiently as
possible. A typical NLC structure comprises 206 cells. Be-
cause of the large number of nodes, it impractical to re-
sort to standard finite element or finite difference codes to
compute the wake. To make computations manageable, the
SLAC group has developed an RF circuit model. Despite
its limitations, predictions have proven to be in remarkable
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agreement with experimental results. However, until now,
the wake computations remained too slow to make the sim-
ulation of a full linac practical. In this paper, we describe
algorithmic modifications that have led to a code achieving
three orders of magnitude improvement over previously re-
ported performance.

2 CIRCUIT MODEL FOR DDS

In an RF circuit model, Maxwell’s equations are discretized
using a low order expansion based on individual closed cell
modes. The result is a system of linear equations that can
conveniently be represented by a circuit where voltages and
currents are associated with modal expansion coefficient
amplitudes. A model suitable for the computation of the
fields excited by the dipole excitation of a detuned struc-
ture was developed by Bane and Gluckstern [1]. The con-
cept of manifold damping was later introduced by Kroll [2]
and the circuit model was extended by the SLAC group to
include this feature [3]. The result is shown in Figure 1.
The corresponding equations can be put in the form

Figure 1: Circuit model for Damped Detuned Structures.
The thick horizontal lines represent a transmission line.
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wheref is the frequency andI is a unit diagonal. The
submatricesH, Hx, G andR areN × N whereN is the
number of cells (N = 206 for the SLAC structure).H
andĤ describe respectively the TM110-like and TE111-like
cell mode coupling,Hx represents the TE - TM cross cou-
pling,R describes the manifold mode propagation andG
describes the TE-to-manifold coupling. The vectorsa, â
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are the normalized loop currents(a = i/
√
Cn) for the TM

and TE chains andV is the normalized manifold voltage
at each cell location. Finally, the right hand sideb repre-
sents the beam excitation. Since the boundary conditions at
the cell interfaces impose that the TM and TE components
must propagate in opposite directions, only the TM cell
modes are excited by the beam. The dipole mode energy is
coupled out electrically to the manifold via small slots; the
TE component of the field is therefore capacitively coupled
to the manifold. Note that the manifold is represented by a
periodically loaded transmission line for which only nodal
equations make sense, resulting in a mixed current-voltage
formulation.

3 SPECTRAL FUNCTION

Computing the wake of DDS structures involves solv-
ing (1) over the structure’s dipole mode frequency band-
with. A longitudinal dipole impedance is first obtained
by summing the cell voltages (in the frequency domain)
with appropriate time delays. The transverse impedance
is subsequently derived by invoking the Panofsky-Wentzel
theorem. The circuit approach to wake computation in-
troduces a small non-causal, non-physical component to
the wakew(t) which can be suppressed by considering
[w(t) − w(−t)]u−1(t) instead. The sine transform of
this function, proportional to the imaginary part of the
impedance, is known as the spectral functionS(ω). In
the context of circuit-based wake computations,S(ω) is
a more convenient quantity to compute than the dipole
(beam) impedance.

4 SPARSE LINEAR EQUATIONS

In the DDS circuit model, each cell couples only to its near-
est neighbors. The resulting matrix is sparse and com-
plex symmetric (a consequence of electromagnetic reci-
procity). Computing the spectral function involves solv-
ing a sequence systems of linear equations. At each step
in frequency, the coefficient matrix changes slightly while
its sparsity structure remains identical. In addition, a good
starting approximation to the solution for any frequency
step is provided by the solution from the previous step.

4.1 Iterative Methods

An algorithm suitable for symmetric complex systems
is the so-called Quasi Minimal Residual (QMR) algo-
rithm [4]. This algorithm is a relative of the well-known
conjugate gradient method which seeks to minimize the
quadratic form(Ax − b)T · (Ax − b). The QMR algo-
rithm minizimizes a different quadratic form; in both cases
the key to rapid convergence is suitable “preconditioning”
of the systemAx = b with an approximate and easy to
compute inverse. Tests were performed with RDDS circuit
matrices using standard incomplete factorization precondi-
tioners; but the results were somewhat disappointing. It
is believed that with a suitable preconditioner, the method

can be competitive; however, efforts to identify one were
abandoned after a direct technique proved to be more than
satisfactory.

4.2 Direct Methods

Direct algorithms are essentially all relatives of the elemen-
tary Gaussian elimination algorithm, where unknowns are
eliminated systematically by linear combinations of rows.

A crucial point is that the order in which the rows of
the matrix are eliminated has a direct impact on com-
putational efficiency since a different order implies dif-
ferent fill-in patterns 1. In principle, there exists an elim-
ination order that minimizes fill-in, which isnot the same
as the most numerically stable ordering. In some cases, it
is even possible to find an ordering that produces no fill-
in at all. Although the determination of a truly optimal
ordering is an NP-complete problem, it is possible using
practical strategies to find orderings that result in signifi-
cant computational savings. The most successful class of
ordering strategies are so-called “local” strategies that seek
to minimize fill-in at each step in the elimination process
regardless of their impact at a later stage.

The Markowitz Algorithm A good local ordering
strategy is the Markowitz algorithm. Suppose Gaussian
elimination has proceeded through the firstk stages. For
each rowi in the active(n − k) × (n − k) submatrix, let
r

(k)
i denote the number of entries. Similarly, letc(k)

j be the
number of entries in columnj. The Markowitz criterion is
to select as pivot the entrya(k)

ij from the(n− k)× (n− k)
submatrix that satisfies

min
i,j

(r(k)
i − 1)(c(k)

j − 1) (2)

Using this entry as the pivot causes(r(k)
i − 1)(c(k)

j − 1)
entry modifications at stepk. Not all these modifications
will result in fill-in; therefore, the Markowitz criterion is
actually an approximation to the choice of pivot which in-
troduces the least fill-in.

5 CODE DESCRIPTION

Our code is based on the spectral function method and uses
Markowitz ordering to solve the circuit equations in the fre-
quency domain. Compared to the procedure outlined in [3],
the following changes have been made: (1) The manifold
voltageA is not separately eliminated, in order to preserve
sparsity. (2) Once the system (1) is solved, the loop cur-
rents are known and the cell voltages can be obtained by a
simple matrix multiplication.There is therefore no need
to form an inverse[5].

1The elimination process creates non-zero entries at positions which
correspond to zeros in the original coefficient matrix. The fill-in is the set
of all entries which were originally zeros and took on non-zeros value at
any step of the elimination process.
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Two additional remarks are in order. The process of de-
termining the Markowitz ordering can by itself be time-
consuming; however, sincethe structure of the RDDS
matrix remains the same at every step in frequency, the
ordering needs to be determined only once. The relative
magnitudes of the equivalent circuit matrix entries do not
change very significantly over the frequency band occupied
by the dipole modes.This insures that the Markowitz
ordering remains numerically stable for all frequency
steps.

Implementations of the Markowitz algorithm are widely
available. We used SPARSE [6], a C implementation that
takes advantage of pointers to store the coefficient matrix
as a two-dimensional linked list. To eachnon-zero entry
corresponds a list node. Each node in turn points to struc-
ture which comprises the numerical value of the entry, its
two-dimensional indices and a pointer to an updating func-
tion. A linked list makes sequential traversal of a row or
a column of the matrix efficient; however, randomaccess
is expensive. To update the matrix ateach frequency step,
we sequentially scan the entire list and call an update func-
tion by indirection using a pointer stored within each entry
structure.

The RDDS circuit matrix is not only sparse, it is also
symmetric. The SPARSE package does not exploit this
structure because the standard elimination process destroys
symmetry. We note that the Markowitz scheme can be ex-
tented in a way that preserves symmetry.

6 RESULTS

Our optimized wakefield code was used to compute the
wake envelope of the RDDS structure, using parameters
provided by SLAC. On a 550 MHz Pentium III (Linux,
GNU gcc compiler) a complete calculation of the wake
takes approximately 14 seconds. This represents a gain of
roughly three orders of magnitude compared to the previ-
ously reported performance and allows the generation of
wakes for an entire linac in less than four hours. Output
from the code is presented in Figures 2 and 3. The results
are identical to those obtained by the SLAC group.
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Figure 2: Computed spectral function for the RDDS1 struc-
ture.
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Figure 3: Computed wake for the RDDS1 structure.
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