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Abstract
We report the application of the Bayesian Inference of

the unknown parameters of the accelerator model using the
FRIB commissioning data. The inference result not only
indicates the value of the unknown parameter but also the
confidence of adopting the value. The Bayesian approach
provides an alternative method to understand the difference
between the accelerator model and the hardware and may
help to achieve ultimate beam parameters of FRIB.

INTRODUCTION
Modern accelerators equip with complex diagnostics

system to probe the beam in both machine commissioning
and operation. A significant amount of diagnostic data
is recorded to understand the statistical properties of the
bunched charged particles. The diagnostic data may be the
first order moment (beam centroid) from beam position
monitors (BPMs), second order moment (beam size) or
sampling of the beam distribution from the projection on
the varies types of the profile monitors. These data are the
only clue to tune the control knobs to make the accelerator
as the machine we designed.

FRIB accelerator delivers up to 400 KW heavy ion beams
to the target to generate rare isotope for nuclear physics
researches. It features various types of diagnostic devices
to probe the beam position and beam profile at different
locations. FRIB is now being commissioned by stage. In
this paper, we use the measurement data of Front End of the
FRIB accelerator [1], which is sketched in Figure 1.

As in all linac accelerator, the initial condition from a
certain starting point largely determines the beam properties
downstream and the machine performance. They have to
be determined as the unknown parameter of the machine
model from the starting point to the location of the diagnostic
devices, with a set of measurement data.

Usually, a fitting routine is adapted to find the unknown
parameters of the model using the measurement data.
However, there are limitations to the fitting method. First,
in most cases, it is not easy to get the uncertainties of the
fitting results. The uncertainties of the unknown parameter
are very important in machine optimization. Second, the
fitting routine tends to lose its efficiency in high dimensional
parameter space.

In this paper, we report an attempt of using Bayesian
Inference to infer the unknown parameters in the model
using measurement data from FRIB Front End accelerator.
The Bayesian Inference algorithm is based on the well known
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Figure 1: 3-D Drawing of Front End accelerator in FRIB.

Bayes’ theorem,

P (H | M) =
P (M | H) · P (H)

P (M)
(1)

Here, H is the hypothesis, which represents the guess of
the distribution of the unknown parameters. M is the set
of measurements. The left-hand side of Eq. 1 is called
posterior probability, the distribution of unknown parameter
with given measurement results. On the right-hand side,
P (M | H) is the possibility of achieving some measurement
result assuming the hypothesis H is valid, while the P(H) is
the prior guess of the distribution before the measurement is
taken. The denominator P(M) is the marginal probability of
measurement M , which is very hard to compute in reality.

Since the direct evaluation of Eq. 1 is difficult, we adopt
the Markov Chain Monte Carlo (MCMC) methods [2], to
sample the posterior probability which is proportional to

P (H | M) ∼ P (M | H) · P (H) (2)

without evaluating P (M).

MODEL DESCRIPTION
We use the model of the FRIB Front End accelerator,

which starts at the exit of the ion source. The initial 4-
D linearized beam distribution is unknown, which can be
represented in 4 × 4 matrix:

©«
〈
x2〉 ⟨xx ′⟩ ⟨xy⟩ ⟨xy′⟩

⟨x ′x⟩
〈
x ′2〉 ⟨x ′y⟩ ⟨x ′y′⟩

⟨yx⟩ ⟨yx ′⟩
〈
y2〉 ⟨yy′⟩

⟨y′x⟩ ⟨y′x ′⟩ ⟨y′y⟩
〈
y′2

〉 ª®®®¬
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Figure 2: Inference Results of ϵx(up left), βx(up middle), αx(up right), ϵy(bottom left), βy(bottom middle), αy(bottom
right).

the 16 matrix elements contain 10 degree of freedom. We
can express 10 parameters (denote by θ) in the Twiss
parameter form as

θ =
(
ϵx, βx, αx, ϵy, βy, αy, cxy, cxy′, cx′y, cx′y′

)
where ϵx/y are the rms emittance, βx/y are the beta functions,
αx/y are the alpha functions and 4 coupling factors represents
the coupling between the horizontal and vertical plane.

To experimentally determine these 10 parameters, we
change the voltages of three electric quadrupoles (V =

(V1,V2,V3)) and record the beam profile using a viewer
downstream. The viewer gives the rms beam sizes in
both transverse plane and the correlation, written as σ =(
σx, σy, σxy

)
. Applying the Bayes’ theorem, we get:

P (θ | (σ,V)) ∼ P ((σ,V) | θ) · P (θ) (3)

To evaluate the likelihood function P ((σ,V) | θ), we have
to make further assumptions. With given machine parameter
V and initial beam distribution θ, the model will predict
the measurement result at the viewer, denoted as σmod.
We assume that the real measurement σmea only differs
from σmod, by a Gaussian random number δξ, where ξ is
normalized Gaussian random number and δ =

(
δx, δy, δxy

)
are the rms random deviation between the model and the
real measurement. Equivalently, we assume that there is no
systematic error in the model. With this assumption, the
likelihood function can be written as:

P ((σ,V) | θ, δ) =
∏
i

P ((σ,V) | θ, δ)

∼
∏
i

exp
(
−
(
σmea,i − σmod,i

)2
/2δ2

)
δxδyδxy

where the subscript i denotes the ith measurement using
different machine setting V .

In the likelihood assumption, we introduce 3 more
unknown parameter δ =

(
δx, δy, δxy

)
. They should be

determined together with the 10 unknown parameter θ. Eq.
3 becomes:

P (θ, δ | (σ,V)) ∼ P ((σ,V) | θ, δ) · P (θ, δ) (4)

The prior distribution P (θ, δ) should be determined by
the prior knowledge of the parameters. Here we only impose
the necessary limitations such as the emittance and beta
functions should be positive. Otherwise, the parameters are
assumed to have a uniform distribution.

INFERENCE RESULTS
We write MCMC python program to evaluate the posterior

distribution P (θ, δ | (σ,V)) using Eq. 4. The program adopt
the Metropolis–Hastings algorithm to evaluate the MCMC.
The algorithm is detailed as below steps:

1. Choose initial condition (0th iteration) θ0 and δ0. The
choice does not affect the inference result. However,
a reasonable guess of the initial condition reduces the
required iteration to reach equilibrium.

2. Evaluate the π(i) = P
(
(σ,V) | θi, δi

)
·P

(
θi, δi

)
for the

ith iteration

3. Make Gaussian random walk centered at the value of θi
and δi , with preset step size as the standard deviation,
to get the new trial parameters θt and δt

4. Evaluate the π(t) = P
(
(σ,V) | θt, δt

)
· P

(
θt, δt

)
5. Get a sample u from uniform random distribution [0,1]

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPTS072

WEPTS072
3290

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques



Figure 3: Inference Results of cxy , cxy′ , cx′y , cx′y′ (from left to right).

Figure 4: Inference Results of δx , δy , δxy(from left to right).

Figure 5: Comparison of the measurement results (dots)
with the results from the model with inferred parameters.
The blue, orange and green color represent the horizontal
beam size, vertical beam size and correlation between the
two directions.

6. If u < min
(
π(t)
π(i) ,1

)
, the random walk is accepted,

θi+1 = θt δi+1 = δt ; otherwise θi+1 = θiδi+1 = δi

The step 2-6 is one iteration to get the distribution of
unknown parameter θ and δ. We repeat the iteration and till
the saturation of each parameter is reached. After saturation,
we continue the iterations, so that we can achieve the stable
distribution of each parameter. The Figure 2,3 and 4 show the
iteration history of each parameter in θ and δ. In all figures,
the x-axis is the iteration number and y-axis is the value of
the parameter. Totally 500k iterations are calculated. The
sample distributions of all parameters reach saturation except
the horizontal emittance after 250k iterations. In each plot,
the histogram is attached to the right of the figure to represent
the stable distribution of the corresponding parameter.

By taking the average of the stable distribution of each
parameter in θ and using them in the model, we achieve
the expected measurement value and compare it with the
experimental data in Figure 5. Generally, the inferred
parameters predict the results very close to the measurement,
except for the several horizontal beam size measurement.
The discrepancy cannot be improved by choosing a better
combination of the parameters. Such discrepancy may due
to the missing physics in the model or the measurement
error in some measurement. Since the measurement is
achieved from a viewer which is not a precise diagnostics
device, the measurement error has larger change to induce
the discrepancy. Another indicator of such discrepancy is
that the iteration plot of the horizontal emittance shows poor
convergence at 500k iterations. We may resolve the unknown
discrepancy by multiple measurements in the future.

Compare with the regular fitting method, Bayesian
Inference provides the uncertainties of each parameter
from the sampling of the distribution. This uncertainty
information can be used in tuning the accelerator and allow
us to trust these parameters with different confidence, which
will prevent or reduce the overfitting problem. We will
demonstrate this advantage in the future beam experiments.

SUMMARY
We use a set of simple measurement data in the FRIB

Front End accelerator to demonstrate the effectiveness of the
Bayesian Inference. The inference result is the distributions
of the unknown parameters. The advantage of this approach
is the capability of knowing how good does the parameter in
the model to describe the data. This information may help
to tune the machine without the over-fitting problem.
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