
PYG4OMETRY : A TOOL TO CREATE GEOMETRIES FOR GEANT4,
BDSIM, G4BEAMLINE AND FLUKA FOR PARTICLE LOSS AND

ENERGY DEPOSIT STUDIES
Stewart Boogert∗, Andrey Abramov, Joshua Albrecht,

Gian Luigi D’Alessandro, Laurence Nevay, William Shields, Stuart Walker
JAI at Royal Holloway, University of London, Egham, TW20 0EX, UK

Abstract
Studying the energy deposits in accelerator components,

mechanical supports, services, ancillary equipment and
shielding requires a detailed computer readable description
of the component geometry. The creation of geometries is
a significant bottleneck in producing complete simulation
models and reducing the effort required will provide the abil-
ity of non-experts to simulate the effects of beam losses on
realistic accelerators. The paper describes a flexible and easy
to use Python package to create geometries usable by either
Geant4 (and so BDSIM or G4Beamline) or FLUKA either
from scratch or by conversion from common engineering
formats, such as STEP or IGES created by industry standard
CAD/CAM packages. The conversion requires an interme-
diate conversion to STL or similar triangular or tetrahedral
tessellation description. A key capability of pyg4ometry
is to mix GDML/STEP/STL geometries and visualisation
of the resulting geometry and determine if there are any
geometric overlaps. An example conversion of a complex
geometry used in Geant4/BDSIM is presented.

INTRODUCTION
Simulating radiation transport in an accelerator beamline

requires a description of the 3D layout, structure, dimensions
and material properties of the physical objects that the beam
particles can interact with. This description is commonly
referred to as a “geometry model” or “geometry”. In general,
the elements (volumes) in such a model must not overlap,
ensuring that particles can be located in only one volume
at a time. There is also a trade-off between the geometry
detail and the simulation execution time. Because of those
constraints, radiation transport geometries have traditionally
been prepared by hand.

Pyg4ometry started as a python scripting tool to gener-
ate beam line geometries for BDSIM. BDSIM is a Geant4
application which allows a user to rapidly create a full three
dimensional model of an accelerator from an optical descrip-
tion. A guiding principle of BDSIM is rapid simulation
of accelerator models, the MADX input format for exam-
ple can be converted for use in BDSIM in minutes. Rarely
described in accelerator optical descriptions is the geome-
try of the physical material that comprises the accelerator,
beam-pipe, magnets, supports, tunnel, beam instrumentation
etc. The aim of pyg4ometry is to create a tool in which
complex geometry can be created as quickly as a generic
∗ stewart.boogert@rhul.ac.uk

BDSIM model. A key requirement is to be able to integrate
and composite geometry sources to a single file.

Particle Transport Codes
There are multiple different Monte Carlo (MC) codes to

simulate the transportation and physics processes of particles
though accelerators and detectors, these include Geant4 [1],
MCMPX [2] and FLUKA [3]. Generally accelerator codes,
like MAD8 [4], MADX [5], Transport [6] etc, are interfaced
to a MC code to produce a complete simulation of beam
losses. Two beam line simulation tools have been developed
on the basis of Geant4; BDSIM [7–9] and G4Beamline [10].

Geometry Generation and GDML
The specification of the geometry of the material surround-

ing an accelerator can be an exceedingly time consuming
and error prone task. Typically either the detector or accel-
erator infrastructure is constructed over many years and the
simulation geometry can be created over similar time scales.
This does not allow for rapid simulation of a system as the
burden of creating the geometry is too great. An XML-based
markup language, Geometry Description Markup Language
(GDML) is used as the file format for geometry export in
pyg4ometry.

SOFTWARE IMPLEMENTATION
Pyg4ometry is a collection of python classes that mimic

closely the C++ interface of Geant4. The aim to have all of
the “detector” description classes implemented in python,
these include geometry, materials and optical surfaces. The
pyg4ometry defined geometry can then quickly be written
as a GDML file for loading into BDSIM or G4Beamline.
This is a much quicker interface to a full C++ Geant4 appli-
cation and any programmed geometry can be viewed quickly
using VTK. Geometry defined using Pyg4ometry can be
converted to a surface triangulation using primitive mesh
generation of each solid in python and a constructive solid
geometry (CSG) library based on Binary Space Partitioning
(BSP) trees. GDML has a simple mathematical expression
language so geometries can be parametrised, this is also
implemented in pyg4ometry using ANTLR [11]. A Python
interface to the geometry primitives of Geant4 allows conver-
sion applications to be developed from FLUKA/STEP/STL
descriptions to pyg4ometry. Finally and most importantly
pyg4ometry provides an interface to GDML, as the python
interpreter performs important syntax checking of large and
complex geometries.

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPTS054

WEPTS054
3244

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques



EXAMPLES
Python

A complete code example for creation of a simple geom-
etry consisting of three Iron solids is shown below. The
python interfaces are so similar to the Geant4 C++ interface
and the user can refer to the Geant4 documentation.

import pyg4ometry.gdml as gd
import pyg4ometry.geant4 as g4
import pyg4ometry.visualisation as vi
import numpy as _np

# create empty data storage structure
reg = g4.Registry()

# 1) expressions
wx = gd.Constant("wx","100",reg)
wy = gd.Constant("wy","100",reg)
wz = gd.Constant("wz","100",reg)
bx = gd.Constant("bx","10",reg)
by = gd.Constant("by","10",reg)
bz = gd.Constant("bz","10",reg)

# 2) materials
wm = g4.MaterialPredefined("G4_Galactic",reg)
m = g4.MaterialPredefined("G4_Fe",reg)
# 3) solids
wb = g4.solid.Box("wb",wx,wy,wz,reg)
b = g4.solid.Box("b",bx,by,bz,reg)
s = g4.solid.Orb("o",bx/2,reg)
t = g4.solid.Tubs("t",0,bx/2,bz,0,2*_np.pi,reg)

# 4) structure
wl = g4.LogicalVolume(wb, wm, "wl", reg)
bl = g4.LogicalVolume(b, m, "b", reg)
sl = g4.LogicalVolume(s, m, "s", reg)
tl = g4.LogicalVolume(t, m, "t", reg)
bp = g4.PhysicalVolume([0,0,0.0],[0,0,0],

bl, "b_pv", wl,reg)
sp = g4.PhysicalVolume([0,0,0],[-2*bx,0,0],

sl, "s_pv", wl,reg)
tp = g4.PhysicalVolume([0,0.5,0],[2*bx,0,0],

tl, "t_pv", wl,reg)

# set world volume
reg.setWorld("wl")

# 5) gdml output
w = gd.Writer()
w.addDetector(reg)
w.write("simple.gdml")

# 6) visualisation
v = vi.VtkViewer()
v.addLogicalVolume(wl)
v.addAxes(40)
v.view()

The code is divided in 6 blocks of definitions, reusable pa-
rameters, materials, solids, structure and placement, GDML
IO and finally visualisation. A key difference between

pyg4ometry and Geant4 is a dedicated object known as
the Registry to store all geometry definitions to be stored
in the output file. The VTK output from this example is
shown in Figure 1, where three solids, a cube, sphere and
cylinder, are placed with translations and rotations within a
cubical world volume.

Figure 1: Example of three primitive Geant4 solids rendered
in VTK.

Figure 2 shows a more complex geometry example of a
cavity beam position monitor and short sections of beam
pipe.

Figure 2: Example of a more complex geometry example, a
cavity beam position monitor.

Standard Tessellation Language (STL)
STL file format describes a raw unstructured triangulated

surface, where the surface normal is defined by the ordering
of the vertices. Pyg4ometry supports the loading STL files
and conversion to G4TessellatedSolid. A classic STL exam-
ple loaded in pg4ometry and displayed in VTK is shown in
Figure 3

import pyg4ometry
r = pyg4ometry.stl.Reader("example.stl")
reg = r.getRegistry()

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPTS054

MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

WEPTS054
3245

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



Figure 3: STL surface mesh rendered in VTK using
pyg4ometry.

Computer Aided Design/Manufacturing (CAD/-
CAM)

Arbitrary conversion of CAD/CAM files to pyg4ometry
is a very challenging task. Typically users convert the CAD
description into an intermediate surface triangulation format
(such as STL described previously) and load the geometry as
a G4TessellatedSolid. An interface for loading STEP/STP
files was creating using FreeCAD/OpenCASCADE. A single
solid in general corresponds to a part and multiple place-
ments of a solid to a part assembly. A example of a conver-
sion of a large STEP file to pyg4ometry/GDML is shown in
Figure 4.

import pyg4ometry
r = pyg4ometry.freecad.Reader("example.step")
reg = r.getRegistry()

Figure 4: Example a conversion from STEP file description
of the shielding of the CERN East Area T8 and T11 test
beam lines to GDML. Each part is given a randomly assigned
colour to clearly indicate the structure of the shielding.

BDSIM
Geometry created by pyg4ometry can be directly loaded

into Geant4 based. Figure 5 shows the cavity BPM example
loaded into BDSIM.

Figure 5: Example of geometry in Geant4/BDSIM. The ex-
ample shows a 50 GeV proton interacting with the geometry
material.

SUMMARY AND FUTURE
DEVELOPMENTS

There any many potential enhancements that are being
considered for pyg4ometry. Given the interface matches
so closely that of Geant4, an alternative C++ output writer
can be quickly written to allow pyg4ometry to generate
C++ code which can be directly compiled into a Geant4
application. Although not described in this publication, a
FLUKA geometry loader has been written and can load large
pre-existing geometries into Pyg4ometry and subsequently
write GDML files. This is currently being refactored and
will appear in the next public release of pyg4ometry. In
addition to the FLUKA to GDML conversion, conversion
of Geant4/GDML geometry to FLUKA is yet unstarted but
a relatively straight forward task. The requirement that vol-
umes do not overlap causes a problem for the CAD/CAM
(STEP) conversion to Geant4/GDML as there is no require-
ment that the parts and assemblies are not overlapping. Fi-
nally a graphical user interface (GUI) can be developed so
allow users without programming experience to generate
geometry.

Pyg4ometry is a powerful package to rapidly develop
material geometries for accelerator beam line simulations.
Currently existing geometry can be loaded from GDML,
STEP, STL and FLUKA files. We introduce a new python
interface to create geometry and adapt existing geometry.
pyg4ometry can composite geometry from multiple sources
to create a complete model which can be exported directly
to GDML and then can be loaded into a Geant4 based appli-
cation. Although based on GDML and Geant4 pyg4ometry
can be easily extended to other MC simulation geometry for-
mats. Pyg4ometry is available via git and published under
a GPL licence [12].

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPTS054

WEPTS054
3246

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques



REFERENCES
[1] Recent developments in Geant4, NIMA 835, pages 186-225,

2016
[2] MCNPX user manual, https://laws.lanl.gov/vhosts/
mcnp.lanl.gov/pdf_files/la-ur-02-2607.pdf

[3] A. Ferrari, et al., “FLUKA: a multi-particle transport code,”
CERN Report CERN-2005-10, 2005.

[4] MAD8 documentation, http://mad8.web.cern.ch/
mad8/

[5] MAD-X documentation, http://madx.web.cern.ch/
madx/

[6] PSI Graphic Transport Framework by U. Rohrer, based on a
CERN-SLAC-FERMILAB version by K.L. Brown et al.

[7] L. Nevay, et al., “Bdsim: An accelerator tracking code with
particle-matter interactions,” , arXiv:1808.10745, 2018.

[8] BDSIM manual, http://www.pp.rhul.ac.uk/bdsim

[9] L. J. Nevay et al., “BDSIM: Recent Developments and New
Features Beyond V1.0”, presented at the 10th Int. Particle
Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019,
paper WEPTS058, this conference.

[10] G4Beamline documentation, http://www.
muonsinternal.com/muons3/G4beamline

[11] ANTLR documentation, https://www.antlr.org

[12] Pyg4ometry project, https://bitbucket.org/jairhul/
pyg4ometry/src/master/

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPTS054

MC5: Beam Dynamics and EM Fields
D11 Code Developments and Simulation Techniques

WEPTS054
3247

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I


