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Abstract 

Modern particle accelerator projects, such as the 
accelerator for the Multi-purpose hYbrid Research Reactor 
for High-tech Application (MYRRHA) project driven by 
the SCK*CEN in Belgium, have very high stability and/or 
reliability requirements. This means that new strategies for 
the control systems have to be developed. For that, having 
faster beam dynamics simulation could prove to be helpful. 
In this paper, we report the training of neural networks to 
model key properties of the beam in the MYRRHA injector 
as well as in IPHI (“Injecteur de Proton à Haute Intensité”). 
The trained models are shown to be able to reproduce the 
general behaviours of the machines while requiring a very 
low computation time. 

INTRODUCTION 
Modern particle accelerator projects, such as the 

accelerator for the Multi-purpose hYbrid Research Reactor 
for High-tech Application (MYRRHA) project driven by 
the SCK*CEN in Belgium [1], have very high stability 
and/or reliability requirements. As an ADS demonstrator, 
the MYRRHA project requires an accelerator able to 
function with less than 10 beam trips longer than 3 seconds 
over an operation cycle of 3 months. The consolidated 
design of this ADS-type proton accelerator is based on a 
linac solution.) cavities. It is composed of a low energy 
(normal conducting) injector where a 30 keV beam is 
transported through the Low Energy Beam Transport line 
(LEBT) [2] and matched to a 176 MHz 4-rod RFQ [3]. The 
1.5 MeV bunched beam at the RFQ output is then 
accelerated up to 16.6 MeV by CH-cavities [4]. Then the 
beam is injected into a the main superconducting linac, 
composed of independently powered superconducting 
cavities [5] to be accelerated to 600 MeV [6].   

To meet the reliability requirements, it is necessary to 
optimize or develop new methods for the accelerator 
control systems: to minimise beam losses by achieving fine 
tuning of the injector, but also to quickly calculate linac 
settings when a failure compensation has to be applied [7].   
One of the difficulties lies in the relatively long 
computation time of current beam dynamics codes. In this 
context, the very low computation time of neural network 
is of great attraction. However, a neural network has to be 

trained in order to be of any use. The training of a beam 
dynamic predictor uses a large dataset (experimental or 
simulated) that represents the dynamics over the parameter 
space of interest. Therefore, choosing the right training 
dataset is crucial for the quality of the neural network 
predictions. In this work, a study on the sampling choice 
for the training data is performed to train a neural network 
to predict the characteristics of a beam through proton linac 
injector (i.e. a LEBT and RFQ). We show and discuss the 
results obtained on training data set to model the IPHI 
(“Injecteur de Proton à Haute Intensité”) [7] and 
MYRRHA injectors transmission 

THE MYRRHA & IPHI INJECTORS 
This work covers injectors with similar designs from two 

projects: IPHI and MYRRHA. The interest in working 
come from two points: the first is that the MYRRHA LEBT 
was not operational at the time this work started and the 
second is the interests manifested by the IPHI team to 
optimize the transport in their line. In both cases, a proton 
beam is extracted from an ion source into a LEBT section. 
The role of the LEBTs is to shape de beam and drive it into 
a RFQ, first acceleration and bunching element. To do so, 
the LEBTs are equipped with two solenoids to focus the 
beam and four steerers to direct it (see Fig. 1).  

 
Figure 1:  LEBT architecture. 

MYRRHA 
This injector is designed to provide a 4 mA proton beam 

with CW operation at the RFQ output. The protons are 
extracted from the source at 30 keV. In the LEBT, the 
collimator consists of 4 copper plates that can be moved 
independently from each other to intercept part of the 
beam. Note that the RFQ of the MYRRHA injector is 
currently under commissioning at SCKCEN (in Louvain-
L-N) and thus has not yet been assembled to the LEBT. 
Therefore, the neural network model was trained using the 
beam current measured in a faraday cup placed after the 
collimation cone. The line is equipped with two Allison 
scanners and two Faraday cups, the firsts of each are 
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between the solenoids and the seconds of each are after the 
collimation cone (see Fig. 2). 

 

 

IPHI 
 This injector has a 65 mA peak current at the RFQ output 
with a proton beam in pulsed operation (2 ms, 10Hz). The 
352 MHz RFQ accelerates the particles from 95 keV up to 
3 MeV. The intensity of the beam injected into the RFQ is 
controlled using an iris between the two solenoids.  

NEURAL NETWORKS TRAINING 
The neural networks were trained following a 

Supervised Learning approach. The cost function to 
minimize is the Root Mean Squared Error (RMSE) of the 
network over a training dataset, i.e.: the difference between 
the calculated value by the model and the measured value. 
The minimization process is done using the stochastic 
gradient descent method with an initial learning rate of 0.1 
that decreases down to 0.001 when the performance of the 
network does not improve over 5 epochs. An epoch is 
defined as training the network over 1000 steps with a 
batch size of 128. At the end of every epoch, the progress 
of the training is evaluated using a validation dataset. Then, 
every 10 epochs, the model performance is evaluated over 
a test dataset.  

DATASETS GENERATION 
For both machines, the experimental plans followed a 

straightforward approach: multiple scans on the applied 
currents in the solenoids and the steerers for different 
collimator positions are performed while the beam current 
is measured at the end of the LEBT and, in the case of IPHI, 
after the RFQ. 

MYRRHA 
The beam current was measured after the collimation 

cone with a Faraday cup. The value recorded for the beam 
current is the average over 200 measurements at a rate of 2 
kHz. The scans were separated per type of element, 
solenoids or steerers. The applied currents in both 
solenoids ranged from 50 to 110 A and were scanned 
regularly with a step of 2 A. Therefore, each scan consists 
of 961 points. 19 scans were performed with different 
collimator positions. Only the steerers installed in the 
second solenoid were scanned with currents applied from -
3 to 3 A with a step of 0.5 A. Each scan counts 169 points 

and 6 scans were performed. In total, a bit more than 19000 
configurations were measured and used in the dataset. 

IPHI 
The beam current was measured at the end of the LEBT 

with a DC Current Transformer and with an AC Current 
Transformer just after the RFQ. The measured current was 
averaged over a minimum of 5 successful pulses. The 
applied current in the first solenoid was scanned from 50 
to 120 A with a step of 2 A. For the second one, the applied 
current ranged from 145 to 185 A with a step of 2 A. 13 
scans were performed with 756 points each. Once again, 
only the steerers in the second solenoid were scanned. The 
applied current ranged from -0.5 to 0.5 A with a step of 0.1 
A. 2 scans were done however the RFQ suffered from 
breakdowns and have not been used yet. The full dataset 
counts slightly less than 9900 points. 

In any case, the full datasets are then randomly divided 
in three: the training dataset (~60 %), the validation 
dataset (~ 20%) and the test dataset (~ 20%). 

NEURAL NETWORK MODELS 
Inputs and Outputs: MYRRHA Injector Model 

The neural network has 13 inputs: 2 for the applied 
currents in the solenoids, 4 for the applied currents in the 
steerers, 4 for the position of the collimator slits and 3 for 
the pressures measurements. In this case, there is only 1 
output as the objective of the neural network is to model 
the beam current at the end of the LEBT with regard to its 
configuration. 

Inputs and Outputs: IPHI Injector Model 
Here the network only counts 3 inputs: 2 for the applied 

currents in the solenoids and 1 for the position of the iris. 
The values to model are the beam current after the RFQ as 
well as the transmission of the RFQ estimated by dividing 
the current measured after the RFQ by the current 
measured at the end of the LEBT. Therefore, the network 
has 2 outputs.  

Neural Network Core 
The core of the neural network models is identical for 

the MYRRHA and IPHI injectors. The core of the network 
is made with 3 fully connected hidden layers (see Fig. 3) 
with 64 neurons each. The activation function of the hidden 
layers is the Rectified Linear Unit function. The 
initialization of the weight follows the He initialization 
method [8].  

Figure 2: The MYRRHA LEBT [2]. 
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Figure 3: General structure of a fully connected neural 
network. 

RESULTS 
 The trained models performances were evaluated using 
the RMSE over the different datasets and by comparison 
between the experimental data and the model outputs. We 
here present on Figure 4 one result example obtained on 
the IPHI injector model. 

 
The comparison done here is between the beam current 

experimentally measured on IPHI during a solenoid scan 
(top) and the beam current simulated with the neural 
network (bottom). Even though the neural network was 
trained on only 60 % of the points in the scan, it is able to 
reproduce the behaviour of the measured beam current 
over the whole scan.  

The RMSE of the IPHI injector model on the test dataset 
is 0.81 mA for the beam current and 1.65 % for the RFQ 
transmission. The MYRRHA LEBT model has a RMSE 
equal to 0.45 mA for the beam current on its test dataset. 
The RMSEs over the different datasets are given in Table 

1. The training dataset (60 % of the data) is used to 
optimize the parameters of the neural network, the 
validation and test datasets (20 % of the data each) are used 
to verify the progress of the training and avoid overfitting 
and the combined datasets (100 % of the data) regroups 
these three datasets. 

Table 1: RMSE over the Different Datasets 
 MYRRHA IPHI 
Dataset RMSE on 

Beam cur. 
[mA] 

RMSE on 
Beam cur. 

[mA] 

RMSE on 
RFQ trans. 

[%] 
Training 0.46 0.66 1.25 
Validation 0.44 0.79 1.62 
Test 0.45 0.81 1.65 
Combined 0.46 0.72 1.42 

These results show that a neural network can be trained to 
model important beam properties governed by complex 
physics. Furthermore, the computation time of the trained 
model is very low at ~10 μs per configuration. 

CONCLUSION & PROSPECTS 
In this study, we have trained multiple neural networks 

to model key characteristics of proton beams in two 
different injectors. The resulting models are able to 
reproduce the general behaviour of the beam current and 
the RFQ transmission over a wide range of possible 
configurations of the injectors. This and the very low 
computation time of the trained model make neural 
network attractive to develop new control strategies. A 
straightforward approach would be to use standard 
optimization algorithms on the trained model to determine 
an approximate configuration to obtain desired beam 
properties. Also, the trained models will be used to train a 
neural network controller using reinforcement learning. In 
this case, the neural network controller would learn to 
behave in a similar way to a human operator by interacting 
with the trained model. This approach will be explored 
soon for the high-energy part of the MYRRHA linac with 
the aim to develop a solution for the fast reconfiguration 
needed for the fault tolerant strategy. 
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