CORRECTION OF CROSSTALK EFFECT IN THE LEReC BOOSTER CAVITY*

Binping Xiao[†], K. Mernick, F. Severino, K. Smith, T. Xin, Wencan Xu Brookhaven National Laboratory, Upton, New York 11973-5000, USA

Abstract

The Linac of Low Energy RHIC electron Cooler (LEReC) is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with peak-to-peak dp/p less than 7e-4. The booster cavity is the major accelerating component in LEReC, which is a 0.4 cell cavity operating at 2 K, with a maximum energy gain of 2.2 MeV. It is modified from the Energy Recovery Linac (ERL) photocathode gun, with fundamental power coupler (FPC), pickup coupler (PU) and higher order mode (HOM) coupler close to each other. The direct coupling between FPC and PU induced crosstalk effect in this cavity. This effect is simulated and measured, and it is further corrected using low level RF (LLRF) to meet the energy spread requirement.

INTRODUCTION

The LEReC design has a tight energy spread requirement [1, 2]. In the electron linac of LEReC, the 704 MHz superconducting radio frequency (SRF) booster cavity is the major accelerating cavity that accelerates 400 keV bunches from the DC gun near the top of the RF wave, with an accelerating voltage up to 2.2 MV [3]. In a typical SRF cavity, the FPC and the PU are positioned on different sides of the cavity. In the booster cavity, however, since it is modified from an SRF photocathode gun, one side is reserved for photocathode insertion, and the FPC and PU are installed on the same side of the cavity that is opposite to the photocathode. In this case there is a direct coupling between them, that causes distortion of the RF response. During the operation of this cavity, we noticed this phenomenon, named crosstalk effect, that produces around 1 kV voltage fluctuation while combining with fast and slow variation on the cavity resonant frequency. This effect was introduced and simulated without electron beam previously [4]. In this paper, this effect with beam is further modelled, measured, and corrected using LLRF to meet the energy spread requirement.

BOOSTER CAVITY AND CIRCUIT MODEL

As described in [4], the SRF booster cavity is modified from the ERL photocathode gun. It has two FPCs, two PUs, and one HOM coupler, with a PU (HOMPU) on the HOM coupler to monitor the RF leakage of the fundamental mode to the HOM damper. All couplers are on the same side of the cavity, shown in Figure 1. Please

MC7: Accelerator Technology

note the second PU is opposite to the one shown in the Figure. With FPC and PU on the same side of the cavity, the direct coupling between FPC and PU causes distortion of the RF response, so called crosstalk effect. With this effect, the voltage on the PU, which is regulated by LLRF, is not strictly proportional to the cavity accelerating voltage, and thus introduce an energy spread that is with the same order of the budget.

Figure 1: LEReC booster cavity with cross-section view (top-left).

In order to understand this effect, a circuit model similar to [5] is used to model the crosstalk effect. In this model, we analyse only one FPC (with admittance $B_1=j\omega C_1$) and one PU ($B_2=j\omega C_2$). The crosstalk (direct capacitive coupling between FPC and PU) is represented by $B_{12}=j\omega C_{12}$. In this plot, $G_{\rm S}(=1/Z_{\rm S})$ and $G_{\rm L}(=1/Z_{\rm L})$ are the admittance of source and load. $Y_c=(1+jQ2\Delta\omega/\omega_0)/R$ the admittance of cavity, with R the shunt impedance of the cavity. A term I_b is further added to model the cavity with beam. Coupling coefficients of FPC and PU are $\beta_1= B_1^2R/G_{\rm S}$ and $\beta_2=-B_2^2R/G_{\rm L}$, respectively. We have the loaded quality factor, as well as the loaded shunt impedance: $Q_{\rm L}=Q/(1+\beta_1+\beta_2)$ and $R_{\rm L}=(R/Q)^*Q_{\rm L}$. These two numbers are temperature dependent.

Figure 2: Circuit model of the cavity with crosstalk.

We define $Y_0=Y_C+B_1+B_2$, $Y_1=G_S+B_1+B_{12}$ and $Y_2=G_L+B_2+B_{12}$. Applying Kirchhoff law, one obtains the following equations:

^{*} Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. *binping@bnl.gov

DO

 $Y_1V_1-B_{12}V_T-B_1V_c=G_8V_g$ at point 1 publisher. $I_b-B_1V_1-B_2V_T+Y_0V_c=0$ at point 2 $-B_{12}V_1+Y_2V_T-B_2V_c=0$ at point 3

CROSSTALK WITHOUT BEAM

work, In Figure 2, $V_1=V_F+V_R$, $I_1=(V_F-V_R)/Z_S$, $I_T=V_T/Z_L$, with of the I_1 and I_T the current through Z_S and Z_L , respectively, and V_F , V_R , V_T the forward, reflected and transmitted voltage title on the tips of FPC and PU. The S parameter measured between point 1 and point 3 is $S_{21}=V_T/V_F$, author(s). $V_g = V_1 + I_1 Z_S = 2V_F$ we have $V_T/V_g = S_{21}/2$. And $V_T/V_1 = V_T/(V_F + V_R) = S_{21}/(1 + S_{11}).$

Without beam, the S parameter is:

 $S_{21}/2 = (B_{12}Y_{C}+B_{1}B_{2})/[Y_{C}G_{L}+(\beta_{1}+\beta_{2})G_{L}/R]$

The term that contains B₁₂ comes from the crosstalk effect, and the term that does not comes from the cavity resonance. Please note both terms are $\Delta \omega$ dependent. This expression can be further noted as:

 $S_{21}/2=B_{12}/G_L+[B_{12}/G_L(Q_L/Q_-$

1)+B₁B₂R_L/G_L]/(1+jQ_L2 $\Delta\omega/\omega_0$).

maintain attribution to the This equation is similar to the equation shown in [6]. must The first term is a vector independent of $\Delta \omega$, in polar chart it is a translation, it is from crosstalk. The second work term in this expression is a Lorentz distribution, in polar chart it is a circle with origin point corresponding to $\Delta \omega \rightarrow \pm \infty$. In the second term, the portion that does not J. contain B₁₂ represents the cavity resonance without uo distributi crosstalk effect, and the portion that contains represents a rotation and enlarging around the origin point due to crosstalk. We use coefficient k to represent the ratio between the amplitude of the first term and the diameter of the circle.

the Figure 3: Polar chart of the S_{21} (a) at room temperature of (b) at cryogenic temperature. With dotted circle the cavity resonance without crosstalk, and the solid circle with. The dashed circle in (b) represents the rotation and enlarging of the circle.

under the Network analyzer measurement was done both at room temperature and at 2K to retrieve the k value. First the Sparameter should be measured to get the resonant $\stackrel{\circ}{\rightharpoonup}$ frequency f_0 . Then the complex S-parameter between f_0 big enough so that the in polar chart, these two points are close enough while comparing with the selection of Δf $\frac{\partial}{\partial f} \Delta f$ and $f_0 + \Delta f$ should be measured, with the selection of Δf E During this measurement fine IF bandwidth should be used to resolve the small signals. from

This measurement was first done at room temperature. The measured Re-Im chart is shown in Figure 4(a). Content Distortions appeared at the frequencies away from

resonance. This is because of the coaxial/waveguide cables that cannot be included in the cable calibration. The phase change in these cables are different at different frequencies, shown in Figure 4(c). This phase change information can be retrieved from the S11 and S22 parameters. After taking this into account, a "calibrated" Re-Im chart is shown in Figure 4(b). At room temperature, $Q_L=Q=5600$, $k=B_{12}/(B_1B_2R_{L-RT})$. k is measured to be 0.18 for the LEReC booster cavity.

 $\beta_1 = O/O_1 >> 1$. At 2K. $k=B_{12}/[B_{12}(1/\beta_{1}-$ 1)+B₁B₂R_L] \approx B₁₂/(-B₁₂+B₁B₂R_{L-2K}). With FPC Q_{ext}=1.5e5, $R_{L-2K}/R_{L-RT}=26.8$. In this case the k value is predicted to be 0.0067 from the room temperature measurement, and it is measured to be 0.0069.

For both temperatures, the phase of $B_{12}/(B_1B_2R_L)$ is always $-\pi/2$.

Figure 4: (a) Measured Re-Im chart of the S21; (b) Re-Im chart after considering phase on coaxial/waveguide cables; (c)Measured S21 that shows the phase versus frequency.

CROSSTALK WITH BEAM

With beam current Ib, the cavity accelerating voltage can be calculated based on the measured V_F , V_R and V_T :

 $V_{C}=(Y_{2}/B_{2})V_{T}-(B_{12}/B_{2})(V_{F}+V_{R})$

The first term is the term we normally use (without crosstalk), the second term is an additional term, it represents the RF leakage from the tip of the FPC to the PU. The value of B_{12}/B_2 can be evaluated from the k value that we measured previously. Beam current Ib did not appear in this term, since it could be determined from V_F , V_R and V_T . The cavity voltage without applying the above crosstalk correction is the first term only, $V_{C_old}=(Y_2/B_2)V_T$, it does not represent the actual accelerating voltage of the booster cavity.

There is a 180-degree bending magnet in the LEReC electron Linac, so that it can cool both yellow and blue

> **MC7: Accelerator Technology T07 Superconducting RF**

DOI

2019).

the

terms of

he

may

from this work

Content

ion beams. This bending magnet provides a way to measure the electron beam energy. Without applying crosstalk correction, the cavity resonance frequency was intentionally detuned using the cavity tuner, the electron beam energy was measured, shown in the top of Figure 5 with time <400s. The energy versus phase error is also plotted, shown as green star in the bottom of Figure 5. After applying the crosstalk correction, the cavity resonance frequency was detuned, and the electron beam energy was measured, shown in the top of Figure 5 with time >400s. The energy versus phase error is also plotted, shown as black dot in the bottom of Figure 5. From the top plot of Figure 5, one can clearly see that the electron beam energy varies with cavity detuning phase error without crosstalk correction, and after applying the correction, it does not change any more. Linear fitting on the bottom plot of Figure 5 suggests that without correction, energy change is about 46.5 eV per degree of detuning, and with correction, it changes to ~ 2.5 eV per degree of detuning. This is a reduction by a factor of about 20. Note that this is the average beam energy after the various RF gymnastics, the energy change of the beam immediately after the booster cavity is about 2-3 times larger.

Figure 5: (top) Measured beam energy without (<400s) and with (>400s) crosstalk correction, while intentionally detuning the cavity resonance frequency. (bottom) Energy versus phase error without (green star) and with (black dot) crosstalk correction.

CONCLUSIONS

In this paper, a phenomenon called crosstalk effect is studied. Crosstalk is a direct coupling between FPC and PU that causes RF power leakage between them. While combining with the microphonics, cryogenic

MC7: Accelerator Technology

T07 Superconducting RF

and temperature/pressure drifting, and ±20 degree "deadband" on the phase error to reduce the movement of the ler. tuner, the crosstalk effect is found to cause cavity ilduq accelerating voltage fluctuation with a magnitude equivalent to the LEReC longitudinal energy spread work, budget if not properly corrected. Previous study revealed that this fluctuation can be explained by the distortion of S parameter simulated via CST [4] while there is no of electron beam. To include electron beam into crosstalk author(s), title effect, we started from a circuit model based on reference [5]. Based on the circuit model without beam, a method was proposed to measure the strength of crosstalk using the S parameter of the cavity at room temperature without beam. The same S parameter at cryogenic temperature tion to was predicted and the prediction matched measurement results. In the case while electron beam presents, the pn cavity accelerating voltage can be determined by a new equation that is related to the measured V_F , V_R and V_T (in real time), R/Q and PU Qext, and the strength of crosstalk. maintain For comparison, without crosstalk, one needs measured V_T (in real time), R/Q and PU Q_{ext} to determine cavity must accelerating voltage. This method is applied into the LLRF of booster cavity and is verified using a bending Any distribution of this work magnet to measure the electron beam energy. The energy fluctuation is measured to be suppressed by a factor of 20.

ACKNOWLEDGEMENT

The authors would like to thank M. Blaskiewicz, J. M. Brennan and A. Zaltsman for the useful discussion on the modelling and simulation, S. Seberg and R. Anderson for setting up the low power measurements, and T. Hayes, V. Schoefer, A. Fedotov for the beam measurements.

REFERENCES

- licence (© [1] A. Fedotov, M. Blaskiewicz, W. Fischer, et al., Accelerator physics design requirements and challenges of RF based electron cooler LEReC, in Proceedings of the North 3.0 American Particle Accelerator Conference 2016, Chicago, IL, USA: (JACoW, Geneva, Switzerland), 2016, В http://accelconf.web.cern.ch/AccelConf/napac 2016/papers/wea4co05.pdf
- B. Xiao, S. Belomestnykh, J. M. Brennan, et al., Design [2] and test of 704 MHz and 2.1 GHz normal conducting cavities for low energy RHIC electron cooler, Physical Review Accelerators and Beams 22, 3, 030101 (2019). https://link.aps.org/doi/10.1103/PhysRevAcce lBeams, 22,030101
- [3] B. Xiao, A. Fedotov, H. Hahn, et al., Higher order mode under damper for low energy RHIC electron cooler used superconducting radio frequency booster cavity, Physical Review Accelerators and Beams 22, 5, 050101 (2019).ę https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.050101
- [4] B. Xiao, K. Mernick, F. Severino, et al., Crosstalk effect in the LEReC booster cavity, in Proceedings of the 29th Linear Accelerator Conference (LINAC'18), Beijing, China: (JACoW Geneva. Switzerland.). 2018 http://accelconf.web.cern.ch/AccelConf/linac 2018/papers/mopo006.pdf
- https://www.bnl.gov/isd/ Y. Zhao, 2002 [5] documents/79902.pdf

10th Int. Particle Accelerator Conf.

[6] F. He, B. Zhang, W. Xu, et al., Analytical and Experimental Study of Crosstalk in the Superconducting Cavity, in *Proceedings of Particle Accelerator Conference* 2009, Vancouver, BC, Canada, 2009, p. 2098. http://accelconf.web.cern.ch/AccelConf/PAC20 09/papers/we5pfp045.pdf