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Abstract
Unsupervised learning includes anomaly detection tech-

niques that are suitable for the detection of unusual events
such as instrumentation faults in particle accelerators. In this
work we present the application of a decision trees-based
algorithm to faulty BPMs detection at the LHC. This method
is fully integrated into optics measurements at LHC and has
been successfully used during commissioning and machine
developments (MD) for different optics settings in 2018.

INTRODUCTION
In the LHC there are 524 beam position monitors (BPMs)

per plane and per beam. Optics measurements are mainly
concerned by phase advance measured between BPMs [1].
The phase advances are inferred from a harmonic analysis
of the turn-by-turn transverse beam motion recorded by the
BPMs around the ring. Faulty BPMs produce unreliable
signal and hence reduce the quality of the optics measure-
ments. The identification of anomalies in acquired beam
position measurements requires the application of automatic
tools as well as human intervention. Most of the noise and
faulty signals can be removed using predefined thresholds
for recorded signal, as well as through applying advanced
signal-improvement techniques based on SVD [2] to reduce
noise in BPM readings. However few nonphysical values are
still observed in reconstructed optics, this combination of
numerical techniques and basic threshold cuts appear not to
be sufficient. Therefore, alternative techniques are required.
Not all reasons for the appearance of BPM anomalies are
known, therefore we cannot define new thresholds which
would indicate faulty BPMs. The required cleaning method
should not rely on numerical cuts or "learn" from the results
of existing tools. Looking for a machine learning based
solution for the described problem, we are going into the
domain of unsupervised learning.

UNSUPERVISED LEARNING
Unsupervised learning deals with tasks where only input

data is available and the target is to find patterns in the given
data or to extract new information. Opposite to supervised
learning, unsupervised techniques provide the possibility to
identify unusual patterns (outliers) without being trained on
labeled data. Several unsupervised learning algorithms have
been applied to optics measurements at LHC [3,4], among
others the Isolation Forest (IF) algorithm [5]. It detects
anomalies using binary trees to isolate each data point. The
anomaly score assigned to each data point corresponds to

∗ elena.fol@cern.ch

the number of splits taken to isolate this point, averaged over
the number of trees.

EXPERIENCE WITH ISOLATION
FOREST APPLICATION AT THE LHC
Due to experience with the systematical observation of

few non-physical “spikes“ in the reconstructed optics func-
tions, we assume that only a small fraction of bad BPMs
is remaining after the cleaning (SVD and numerical cuts).
IF requires the proportion of outliers (contamination) in the
data as input of the algorithm. Initially, the contamination
was set to 1% in the arcs and 2.5% in the IRs. The tuning of
this contamination parameter on simulated BPM faults will
be discussed in the next section.

The parameters that are considered significant for bad
BPMs identification are the betatron tune, the amplitude
of the measured oscillations and the noise scaled with the
amplitude of the signal. During commissioning and MDs
in 2018 the new cleaning method was used complementary
to the existing techniques. In case non-physical outliers
were observed in optics functions, the harmonic analysis
data was additionally cleaned with IF and the optics analysis
was repeated. Figure 1 shows a comparison between the
beta-beating reconstructed from the measurements before
and after applying IF. It can be clearly observed that most
of the remaining outliers have been removed.

Figure 2 shows the summary on IF results on several mea-
surements in 2018 performed for both beams for different
optics settings. It can be observed that most of the spikes
remaining after SVD and thresholds-based cleaning could be
eliminated by IF. It has to be noted that there is not necessar-

Figure 1: The comparison between beta-beating computed
before and after IF cleaning demonstrates that IF anomaly de-
tection significantly reduces the number of unphysical spikes
and reduces the size of errorbars. The optics is computed
for Beam 2 in horizontal plane with β∗=50 cm.
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Figure 2: This summary represents the number of outliers
in β-beating and phase advance averaged over 10 measure-
ments of Beam 1 and Beam 2 performed during MDs in
2018.

ily a direct relation between the location of the spikes and the
actual bad BPMs. The β-functions are calculated from the
phase advances between BPMs in a certain range [6,7]. Due
to the use of a range of N BPMs, a single faulty BPM may
cause multiple spikes in the optics and the produced spikes
might appear not directly at the position of the bad BPM.
Since the definition of a spike is subjective, it is not possible
to conclude on the exact amount of actually faulty BPMs that
are removed and the number of good BPMs that are wrongly
recognized as faulty. Since the knowledge about actual de-
fective BPMs is not available, the assessment of cleaning
algorithms has to be performed on simulations where the
actual bad BPMs are known and can be used as labeled data
to evaluate the performance of the method.

PERFORMANCE EVALUATION ON
SUPERVISED DATASET

First, turn-by-turn signal is generated for 6600 turns with-
out any perturbation using ion optics with β∗= 50 cm in
IP1, 2 and 5. Every BPM is given 0.1 mm Gaussian back-
ground noise. In the second step, the signal of randomly
chosen BPMs is artificially perturbed - these BPMs have
to be identified as bad. In real measurements, the reasons
for the appearance of faulty signal are unknown, but there
are specific artifacts which are known to be related to faulty
BPMs. Considering the BPMs removed by traditional tools
and the remaining spikes, we can conclude that around 5.5%
of measured positions are erroneous. Hence, we perturb
5.5% of original simulated turn-by-turn data. The following
perturbations are used to introduce BPM faults:

• Gaussian noise with σ=0.3 mm is added to the signal
• Signal is replaced by a random value in range [-20, 20]

in a single turn
• Tune of the signal deviates by 10−5 from the rest
• Flat zero signal
• Signal is replaced by zero in a single turn
• Multiple failures (tune deviation, random value in one

turn and noise) are present

2 BPMs with flat zero signal and 5 BPMs of each remaining
failure type are introduced in each simulated measurement
producing 27 bad BPMs per plane in total. As in real optics
measurements, we first clean the simulated BPM signal with

Figure 3: Adjustment of contamination factor of IF algo-
rithm and its effect on the trade-off between cleaning of bad
BPMs and removal of good ones.

existing tools using default settings for SVD [2] and signal
thresholds as shown in Table 1.

Table 1: Cleaning Thresholds Used in 2018. The SVD
settings are described in [2].

SVD Signal cuts

SVD cut 0.925 min peak-to-peak 10−5 mm
SVD modes 12 max peak-to-peak 20 mm

tune deviation 10−5

Knowing from the simulations that around 12 bad BPMs
are removed by traditional cleaning tools and 15 bad BPMs
are remaining, the contamination should be set to 15/(524−
12) ≈ 0.029. To study the influence of the contamination
parameter on the results, we run IF multiple times increasing
the contamination number from 0 to 0.15 step-wise. Figure
3 illustrates the trade-off between eliminating bad BPMs and
removing good BPMs as side effect. Based on the results we
conclude that the optimal contamination factor lies around
0.02 as expected.

The results summarized in Fig. 4 show that the amount of
actual good removed BPMs is small compared to the amount
of identified faults. It must be noted that the presence of
faulty BPMs has a larger negative effect than few missing
BPMs due to the optics computation method [7]. Com-
pared to the experience gained applying the IF algorithm on
measurements in 2018, in simulation we observe more bad
BPMs that are remaining after applying traditional tools than
spikes remaining in real measurements. To be noted that
in measurement summary shown in Figure 2 we consider
subjective observation of nonphysical spikes in beta-beating
and total phase as bad BPMs. Possible explanation for the
difference in the number of good removed BPMs between
measurements and simulations is that not all of bad BPMs
introduced into simulations might cause a spike in the optics.
Also, not all fault artifacts are known and included into the
simulations. Another possible reason is that the contami-
nation factor used in IF algorithm in 2018 differs from the
actual observations in 2018. As shown in Fig. 2 the fraction
of detected bad BPMs decreased to 5.5% compared to the
statistics from the past [3] where 10% of BPMs in each plane
were identified as bad.
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Figure 4: Averaged results of faulty BPMs detection on 20
simulated measurements using contamination factor 0.02.

COMPARISON TO CLUSTERING
Different clustering algorithms have been considered to

detect faulty BPMs at the LHC, complementary to the ex-
isting tools. A possible solution is to apply density-based
algorithms such as DBSCAN [8] which views clusters as
areas of high density separated by areas of low density. DB-
SCAN has been tested offline on real LHC turn-by-turn data.
The results of DBSCAN demonstrated improvements on
data cleaning [9], however a significant amount of outliers
remained in measured optics functions.

Local Outlier Factor (LOF) algorithm measures the local
deviation of density of a given sample with respect to its
neighbors [10]. Like DBSCAN, LOF improves the quality
of turn-by-turn data resulting in less outliers in computed
optics functions. From the experience of applying different
algorithms on turn-by-turn data from past measurements, we
observe that the optics reconstructed from the data cleaned
with IF shows less unphysical spikes compared to the other
two methods [11]. In order to examine the performance and
suitability of each method for faulty BPMs detection, we
carry out the simulation procedure as described in previous
section. DBSCAN, LOF and IF are compared as comple-
mentary methods to the traditional cleaning tool for optics
measurements at the LHC. Figure 5 demonstrates the result
of elimination of faulty BPMs remaining after the applica-
tion of traditional cleaning tools. The comparison shows
nearly identical performance of LOF and IF algorithms on
simulated BPM signal. The anomaly score in LOF method
depends on how isolated the object is with respect to the
surrounding neighborhood, which is very similar to IF algo-
rithm. The locality is given by k-nearest neighbors, whose
distance is used to estimate the density in the neighborhood
and therefore, the number of nearest neighbors has to be
specified as input parameter of the algorithm. Since the
structure of the measurements data can vary significantly de-
pending on the BPM location and machine settings, a general
valid definition of local neighborhood becomes problematic.
Due to the randomization and combination of several deci-
sion trees, IF algorithm should be more robust to deviations
in the data structures than single-model methods [12] and

Figure 5: The comparison is carried out on 20 simulations
for each plane, the results are averaged. Each bar represents
the number of BPMs removed by the method. Dark frac-
tion corresponds to the number of removed BPMs that are
actually bad.

hence it was preferred to other clustering techniques. An-
other advantage of IF is that it requires only the number of
trees and contamination of the data set as input parameters
allowing simpler tuning of the algorithm and more general
application.

In case of large machines such as the LHC equipped with
hundreds of BPMs, it is important to decrease the number of
faulty signal artifacts as much as possible, because a single
faulty BPM can affects the optics computation at multiple
locations. The absence of few good BPMs that might be
caused by IF algorithm does not have a significant negative
effect since the optics computation can be propagated to
the next available BPM. Considering smaller machines, it
is crucial to keep as much BPM information as possible,
removing only critically erroneous signal. In this case, a
method such as DBSCAN appears to be more appropriate
since, as it was shown on simulations, the method does not
identify any good BPMs as faulty, however a portion of bad
BPMs is still remaining in the measurement.

CONCLUSION

The presented study demonstrates the ability of IF algo-
rithm to successfully identify anomalies in measurement
data caused by BPM faults without significant loss of good
signal. Due to the randomization and combination of several
decision trees, the method performs better than clustering
techniques and does not depend on signal-specific thresh-
olds compared to other techniques already used in optics
measurements. Summarizing the results of application of
IF algorithm in 2018, we can observe the reduction of non-
physical spikes in the optics achieved by IF. The new method
complements the existing techniques in an efficient way, such
that most of remaining non-physical outliers are eliminated,
without affecting the optics computation negatively by re-
moving a small fraction of good BPMs.
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