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Abstract

Coherent radiation can be used to measure the longitudi-
nal distribution of the electron beam bunch of any length,
as long as the coherent radiation spectrum can be measured.
In many cases, the Kramers-Krönig relationship is used to
reconstruct the temporal distribution of the beam from the
coherent radiation spectrum. However, the extrapolation
of the low frequency will introduce the uncertainty of the
reconstruction. In this paper, GrEedy Sparse PhAse Re-
trieval (GESPAR) method was used to reconstruct the beam
longitudinal distribution measured by coherent transition
radiation on the THz FEL facility of China Academy of En-
gineering Physics. The results indicate that the GESPAR
method works well for the complex and ultrashort distribu-
tion. It will be an effective tool to accurately measure the
femtosecond bunch temporal structure.

INTRODUCTION

During the past decades, many methods were developed
to measure ultrashort electron beam bunch length, such as
streak camera [1], RF zero-phasing [2], deflecting cavity
[3], electro-optic sampling [4] and coherent radiation [5–7].
Coherent radiation, such as coherent transition radiation, co-
herent diffraction radiation, coherent synchrotron radiation,
etc, can be used to measure the longitudinal distribution
of the electron beam bunch of any length, as long as the
coherent radiation spectrum can be measured. When the
electron bunch length become as short as a few femtosecond
nowadays, the coherent radiation method method becomes
the best length-measurement tool.

However, the coherent radiation measurement is to record
the spectrum of the radiation, which looses the phase in-
formation. To reconstruct the longitudinal distribution, the
phase information must be reconstructed first. For a long
time, Kramers-Krönig (KK) relation was invited to retrieve
the phase information. Unfortunately, there are at least three
disadvantages of the KK relation. Firstly, extrapolation in the
low frequency band will bring uncertainty to reconstruction.
Secondly, KK relation is less accurate when time domain dis-
tribution is complicated. Thirdly, KK relation costs longer
calculation time.

GrEedy Sparse PhAse Retrieval (GESPAR) method was
presented by Y. Shechtman and Y. C. Eldar in 2014 [8, 9].
And then it has rapidly gained great applications in coherent
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imaging, signal processing, macromolecular imaging, and
5G communication [10, 11]. GESPAR treats phase recon-
struction as a nonlinear least squares problem, and assumes
that the time domain signal is composed of a finite number
of specific distributions.

In this paper, we invite the Differential evolution (DE)
genetic algorithm to solve the nonlinear least squares prob-
lem. And the reconstruction with or with out the GESPAR
assumption is presented, respectively. At last, a temporal
reconstruction with DE algorithm is shown from the signal
measured on the Chengdu THz FEL (CTFEL) [12] facility.

RECONSTRUCTION ALGORITHM

Phase Retrieval with Nonlinear Least Squares

Assumming ρ(t) is the original time signal, whose fre-
quency signal is ρ̂(ν) = F(ρ(t)) = |ĝ(ν)|e−φ(ν), where F

represents the Fourier transform, |ĝ(ν)| is the amplitude and
φ(ν) is the phase.

Four the nonlinear least squares consideration, the objec-
tive is to minimize the function f = | | ρ̂2

G
− |ĝ |2 | |, where ρ̂G

is the G-th alternative signal. The flow-chart is shown in
Fig. 1.

According to the Fourier transform relationship, we can
normalize any segment of the time domain signal to the
signal in the (0,1) time period. If the setting unit is 1 s, the
corresponding frequency domain unit interval is 1 Hz, for
example. And similarly, 1 ps in time domain corresponds
1 THz in frequency domain. This is the reasons why the
coherent radiation can measure any shor bunch length as
long as the frequency signal can be recorded correctly.

Figure 1: Phase retrieval flow chart with nonlinear least
squares.
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DE Algorithm

Differential evolution (DE) algorithm is a heuristic global
optimization based on population, works on Darwin’s con-
cept of survival of the fittest [13, 14]. DE and other evolu-
tionary algorithms are often used to solve the beam dynamic
optimization  _ [15–18].

DE starts with a population of NP candidate solutions,
which may be represented as Xi,G , i = 1, 2, . . . , NP, where i

index denotes the population and G denotes the generation to
which the population belongs. DE uses mutation, crossover
and selection to solve problems, which are shown in Fig. 2.

Figure 2: DE flow chart.

The mutation operator is the prime operator of DE. In this
paper, a so-called ‘best-strategy-type-1’ is used [19], where
F ∈ [0, 1] is the control parameter. ri ∈ {1, . . . , NP} is a
random selection and r1 , r2. The operator recombination
and selection are also shown in Fig. 2 The crossover rate
Cr ∈ [0, 1] is the other control parameter of DE.

RECONSTRUCTION SIMULATION

The Sparsity-based method is also considered to reduce
the dimension obviously. The dictionary can be made of
any distribution function, such as Gaussian, flattop, etc, as
shown in Eqs. (1) and (2), where ε is the step function.

ρGaussian,i(t) = ai exp

[
−
(t − bi)

2

ci

]
(1)

ρFlattop,i(t) = ai |ε(t − bi) − ε(t − ci)| (2)

Some examples of the DE sparsity-based retrieval are
shown in Fig. 3. The original distribution (red curve) are
selected as (a) Gaussian , (b) rectangle, (c) triangle and
(d) two-peak Gaussian, respectively. The blue curve is the
reconstruction one. For the dimension has been reduced
less than 30, the calculation goes much fast than the all-
random method. All the results have been achieved within
generation 20 and cost less than 1 minute. The performance
of the sparsity-based retrieval is much more powerful than
the all-random one when the original signals are not too
complicated.

Figure 3: Sparsity-based retrieval with DE algorithm.

CTR EXPERIMENT RESULTS

An experiment of a picosecond electron beam bunch mea-
surement has been carried out on the Chengdu THz free
electron laser (CTFEL) facility. A self-made Martin-Puplett
interferometer is applied to get the auto-correlation curve
of the coherent transition radiaon (CTR) when the electron
beam passing through a golden foil (as shown in Fig. 4). The
electron energy is about 8 MeV. The charge is 100 pC. The
RMS bunch length is estimated as 2 ps by Astra code.

Figure 4: Experiment setup of the self-made Martin-Puplett
inerferometer.

Figure 5: Auto-correlation curve and the DE reconstruction
of the beam longitudinal distribution.

The auto-correlation curve is shown in Fig. 5 (a). The
baseline is set as 20 mV. Then the Fourier transform and
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single electron transition radiation are considered and the
coherent spectrum has been calculated. From the coherent
spectrum, sparsity-based DE retrieval reconstructs the beam
distribution, as shown in Fig. 5 (b). This retrieval uses the
single Gaussian assumption, whose result agrees well with
the KK relation. However, when using multi-peak assump-
tion, the DE algorithm gives more information. as shown in
Fig. 6.

In Fig. 6 (a), The retrieval gives two peaks at last. The
distance between these peaks are about 11.4 ps, and the RMS
of the main peak is about 2.2 ps. In Fig. 6 (b), the curve
gives the result of the photo-cathode drive laser longitudinal
distribution measured by a streak camera. Not surprisingly,
the drive laser has two peaks, too.The distance between these
peaks are about 30 ps, and the RMS of the main peak is about
5.7 ps. Consider the compression ratio of the accelerator
system, the peak distance from the drive laser would become
as: 30×2.2/5.7 = 11.6 ps, which is very close to the retrieval
result.

Figure 6: Result of multi-peak assuption (a) and the photo-
cathode drive laser longitudinal distribution measured by a
streak camera (b).

SUMMARY

This paper has briefly introduced the application of dif-
ferential evolution algorithm to reconstruct the phase infor-
mation of the coherent radiation for ultrashort beam length
measurement. The DE algorithm with all random assump-
tion has the ability to reconstruct any distribution but has
a large cost of time. The sparsity-base DE algorithm can
solve the problem in most cases and goes much faster. One
coherent transition radiation experiment has been carried
on the Chengdu THz free electron laser facility. The DE
algorithm agree well with the Kramers-KrÜonig relation and
the laser distribution measurement result.
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