
HIGH-LEVEL APPLICATIONS FOR THE SIRIUS ACCELERATOR

CONTROL SYSTEM

X. R. Resende ∗, F. H. de Sá, G. do Prado, L. Liu, A. C. Oliveira,

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

Abstract

Sirius is the new 3 GeV low-emittance Brazilian Syn-

chrotron Light source under installation and commissioning

at LNLS. The machine control system is based on EPICS

and when the installation is complete it should have a few

hundred thousand process variables in use. For flexible inte-

gration and intuitive control of such sizable system a con-

siderable number of high-level applications, input/output

controllers and graphical user interfaces have been devel-

oped, mostly in Python, using a variety of libraries, such

as PyEpics, PCASPy and PyDM. Common support service

applications (Archiver Appliance, Olog, Apache server, a

mongoDB-based configuration server, etc) are used. Matlab

Middle Layer is also an available option to control EPICS

applications. Currently system integration tests are being

performed concomitant with initial phases of accelerator

commissioning and installation. A set of functionalities is

already available: Linac’s control; timing subsystem control;

machine snapshots; optics measurements and correction;

magnets settings and cycling; Booster orbit acquisition and

correction, and so on. From the experience so far, subsys-

tems communications have worked satisfactorily but there

has been a few unexpected component misbehaves. In this

paper we discuss this experience and describe the libraries

and packages used in high-level control system , as well as

the difficulties faced to implement and to operate them.

INTRODUCTION

Sirius is the new synchrotron light source of fourth gen-

eration and 3 GeV energy, under construction at Brazilian

Synchrotron Light Laboratory (LNLS) [1]. It is a MBA-type

lattice designed for very low emittance. The machine is in

final phases of the Storage Ring installation and beginning of

Booster subsystems commissioning. Its control system has

been developed over the last few years and it is now being

integrated and tested.

Sirius’s Linac, build by SINAP [2] has been delivered,

commissioned and its control system (CS) successfully inte-

grated in 2018. The Linac-Booster transport line has also

been commissioned last year and, at this moment, the first

hundred turns of beam in the Booster have been achieved.

Alongside these activities, CS architecture validation and

components integration were performed, albeit with yet re-

duced number of installed devices.

In the next sections of this paper we present an overview

of control system development and we briefly discuss the

EPICS server applications and input/output controllers (IOC)

that give support for the high-level applications (HLA). In

∗ ximenes.resende@lnls.br

the sequence we detail the architecture of the HLA and its

current development status. Finally we describe how the

integration of the CS has been evolving during machine

commissioning and end the paper with conclusion remarks

on what the next steps are in HLA development and testing.

CONTROL SYSTEM OVERVIEW

The Sirius accelerator control system (SCS) is based on

EPICS [3], version R3.15. All SCS software components

are open-source solutions developed collaboratively using

git version control and are publicly available in the Sirius

organization page [4] at Github.

The naming system used in Sirius for devices and CS prop-

erties is based on ESS naming system [5]. It was adopted

and implemented after SINAP had built the Linac, which

uses a different system.

Control room desktop configuration and device applica-

tion deployment are managed with scripts and Ansible au-

tomation tool [6].

Although exclusively not the only programming language,

Python 3.6 is employed for most of the software development

in the HLAs, and also in a considerable part of soft IOC.

Sirius beamlines control system was developed indepen-

dently but it has a similar software infrastructure [7].

EPICS SUPPORT SERVICES

Various EPICS support service applications are used in

the SCS. All these services run in docker containers to allow

for easy testing, deployment and eventual host migration.

Data archiving, for example, is done with EPICS Archiv-

ing Appliance [8]. Currently there are around 20 thousand

process variables (PVs) being archived and ∼100 thousand

channels, with a storage rate of the order of 36 GB/day. The

number of PVs being archived is expected to increase by a

factor of ∼20 when the CS components of the Storage Ring

are added in the near future. The storage rate should go up a

more modest factor though, since the most demanding PVs

(from Storage Ring BPMs) are already being archived for

stress testing purposes.

As for activity logging related to machine installation,

operation, component failures and experiments, Olog [9]

is being used. We are yet to implement a software library

that can be used to automate status log insertions and force

predefined formatting suitable for automated performance

analysis of the machine.

An http Apache [10] server is being used to centralize

distribution of static information for system components.

For example, the flexible CS architecture of magnet power

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW003

WEPGW003
2462

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems



supplies is defined in cross-referenced text tables avail-

able through this server. Excitation curves of magnets are

also available in the same way. This allows for rapid re-

configurations without the need of software update deploy-

ments across CS components.

In order to save and restore general machine configura-

tions (machine snapshots, measured and model response

matrices, across-desktop HLA window states, and so on) a

web service has been written with Python back- and front-

ends. The back-end API was developed using the Flask [11]

framework and it interacts with MongoDB [12] database

engine using PyMongo [13]. The front-end API allows for

definition of arbitrary configuration types. Machine snap-

shot configurations, for example, are defined by template

structures and they consist of EPICS PVs name lists.

IOCS

Sirius’ control system IOCs were developed using a mix-

ture of EPICS base, module [14] and extension [15] libraries,

such as StreamDevice, areaDetector, EtherIP, asynDriver,

Motor, procServ, PCASPy [16], and others. Most of the

IOCs run as dockerized services.

Linac IOCs were developed by SINAP in Python 2.6 using

both PCASPy version 0.6.3 (power supplies) and EPICS

base extensions (EGun, Low Level RF, Klystrons, Protection

System, etc). Most of the RF subsystem IOCs were based

on an initial version from DIAMOND. For other subsystems

the IOCs were developed at LNLS. IOCs of vacuum gauges

and pumps, temperature sensors, radiation dose acquisition,

pulsed magnet electronics, timing system, BPM acquisition

control, beam loss monitors and some of RF subsystem

components were implemented using EPICS base and its

extensions.

Magnet power supply IOCs, on the other hand, were

written in Python using PCASPy v0.7.1 and currently run

on BeagleBone Black single-board computers (BBB) with

1GHz ARM cores. BBBs communicate with power sup-

ply controllers via RS485 using a proprietary protocol [17].

Counting all subsystems’ single-board computers, around

150 BBBs have been employed so far, but the number will

rise to around 500 when the Storage Ring control is inte-

grated into the system. Additionally, Python soft IOCs were

developed to convert power supply currents to normalized

magnet strengths. These IOCs run in common computer

servers. Finally, there are a few important additional soft

IOCs implemented with PCASPy, such as power supply di-

agnostics, slow orbit feedback correction (SOFB), high-level

timing abstraction, optics tune and chromaticity corrections,

transport lines beam injection control, and so on.

HIGH-LEVEL GUI APPLICATIONS

As for high-level controls, they are done with GUI appli-

cations running in Debian 9 computer desktops. They were

written mostly using PyQt5 [18], PyDM [19], that consists

in a Python layer on top of Qt [20] and PyEpics [21], and an

in-house developed siriuspy package. The choice of PyDM,

Figure 1: An example of a GUI application: an interface to

optimize and control Booster energy ramp process.

a SLAC [22] initiative with outside contributions, including

a few from Sirius staff, allowed for developments concen-

trated in Sirius-specific issues. It proved to have a smooth

learning curve and rapid development using Qt framework’s

drag-and-drop tools and easy integration with other Python

packages.

The GUI applications set is composed of various win-

dows that can be launched from a main application. Among

others, window control components of the GUI collection

are: Linac launcher, power supplies, transport lines, BPMs,

magnet cycling, Booster ramp, configuration loader, SOFB,

etc. Some examples of applications are shown in Figs.1 and

2.

CS-Studio [23] was also used during subsystem develop-

ments and some are still currently in use for commissioning,

so as to access subsystem’s very specific properties. GUI

for Linac was developed in EDM [24] by SINAP and it is

integrated into the main launcher interface and launched as

separate system processes. There are plans in the future to

progressively rewrite most of Linac’s GUI and CS-Studio

applications in PyDM, in order to have a more uniform look-

and-feel system.

The choice of using an http server and the siriuspy li-

brary, thus centralizing many of CS data structures that

EPICS clients and servers need, improved code maintain-

ability through reuse and minimizes chances of Python GUI

client and EPICS server data inconsistencies.

The Matlab Middle Layer toolkit (MML) [25], integrated

with Accelerator Toolbox(AT) version 1.3 [26], is available

to control EPICS applications through LabCA [27] and MCA

[28]. It is currently being used to simulate and to test model

correction matrices in Booster subsystems commissioning.

The plan is to use various algorithms already implemented

in it, like LOCO and matrices measurements.

SYSTEM INTEGRATION DURING

SUBSYSTEMS COMMISSIONING

The first on-site integration tests of in-house HLA devel-

opments began in November 2018, with commissioning of

Linac-Booster transport line, with relatively few CS com-

ponents. These initial tests progressed very well, requiring

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW003

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPGW003
2463

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



Figure 2: Other examples of applications: the main launcher

and a screen device monitor.

only very minor updates of the software, mostly related to

the EPICS network environment.

After the shutdown of 2018, CS integration tests resumed

in February 2019 with optimization of the Linac and the

transport line, and with the initial commissioning of Booster

subsystems in March. At this point more components were

in use and integration tests enlarged in scope.

In particular, with timing signals now distributed to mag-

net power supplies (PS), other operation modes of the PS for

energy ramp, cycling and for demagnetization were finally

tested. These tests revealed unanticipated inconsistencies

of IOC behaviour triggered by new BBB-PS architectures

that had not yet been tested. These inconsistencies were

identified and corrected.

In order to reduce the number of single-board computers

employed in the installation park, in some cases many PS are

connected to a single BBB that runs the PS IOC. This econ-

omy is limiting PV refresh rates that the PCASPy IOC can

manage, given the limited CPU resources of single-board

computers. IOCs’ code upgrades had to take place in order

to improve their responsiveness to HLA applications that

cycle magnet fields and load machine snapshots. To im-

prove performance, we plan to move the PS IOCs to desktop

servers with more computational resources. We can do this

without much IOC code refactoring by simply replacing the

UART library the IOC currently uses with a TCP/IP library

with the same API but connecting to a lightweight server

running in the BBB and that takes over the communication

with the power supply over RS485. Moreover, IOCs for

pulsed magnets, BPMs and timing subsystems also have had

minor modifications.

A single network event in mid-April, not yet understood,

rendered all PCASPy-based IOCs running in the same sub-

net, but on different host architectures, unresponsive at the

same time. It is speculated that Archiver Appliance broad-

casts triggered the event, since it coincided with the moment

when a considerable fraction of BPM PVs were disconnected.

None of Linac IOCs running in a separate subnet, but were

also usgin PCASPy, were affected.

IOCs written in Python and using PCASPy were intention-

ally designed from scratch so that PCASPy could be easily

swapped out for other EPICS CA servers. This now might

come in handy if spurious events like the one observed start

to happen frequently and we conclude that PCASPy is the

culprit.

Another issue we had until recently was with Olog inad-

vertedly missing entries. It turned out this behaviour was

due to an improper choice of storage disk partitioning in the

server running the application. Increasing the partition size

where application database ran solved the problem.

Generally, the integration tests until now has presented

good progress, despite the fact that they were performed

concomitantly with the commissioning.

CONCLUSION

Sirius is the new 3 GeV low-emittance synchrotron light

source under commissioning at LNLS. Its EPICS based

control system is now under integration tests. Overall the in-

tegration components has been evolving satisfactorily, given

the fact that installation time-line allowed for very limited

before-hand integration. All bugs with impeding or severe

performance limitation impacts have been promptly identi-

fied and fixed. Nevertheless there are a few improvements

that are in order for the near future.

We plan to move power supplies IOCs from single-board

computers to a desktop server with greater processing capac-

ity, which will solve problems of low update rate and that

can be done without major code refactoring. For standard-

ization and better integration of HLAs, we plan to migrate

CS-Studio and EDM GUI applications to PyDM, as well as

translate Linac PV names to Sirius naming convention.

Due to a spurious event occurred during commissioning

that rendered all PCASPy-based IOCs, maybe we will mi-

grate IOCs to another python library, which can rapidly be

performed given the structure in which they were developed.

We plan to continue the development of applications to

ease commissioning and operation, for example through

implementing tools that facilitate debugging and searching

correlations between machine parameters. Another future

step for CS development is the integration of EPICS support

applications to in-house python packages, including script-

ing implementation of data recovery and analyses from the

Archiver, formatted insertion in Olog and generation of ma-

chine performance reports.

ACKNOWLEDGEMENTS

We would like to acknowledge the software development

group (SOL) of the LNLS beamlines division for pointing

out a few years ago to us PyDM as an option for HLA devel-

opment in Python. In particular we thank L. P. Carmo in the

group for the thorough analysis of many HLA architecture

options she did in her internship work. We would also like

to thank some of the ESS Staff, in particular K. Rathsman,

for sharing with us information on ESS naming system and

on their web-based naming service.

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW003

WEPGW003
2464

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems



REFERENCES

[1] A.R.D. Rodrigues et al., "Sirius Status Update", presented

at the 10th Int. Particle Accelerator Conf. (IPAC’19), Mel-

bourne, Australia, May. 2019, paper TUPHW003, this con-

ference.

[2] SINAP - Shangai Institute of Applied Physics, http://

english.sinap.cas.cn/

[3] EPICS - Experimental Physics and Industrial control System,

https://epics.anl.gov/

[4] Brazilian Synchrotron Light Laboratory Organization in

Github, https://github.com/lnls-sirius

[5] ESS Naming System, http://eval.esss.lu.se/DocDB/

0000/000004/010/ESSNamingconvention_20131011_

v2.pdf

[6] Ansible is Simple IT Automation, https://www.ansible.

com/

[7] G.S. Fedel, D. B. Beniz, L. P. Carmo, and J. R. Piton, “Python

for User Interfaces at Sirius”, in Proc. 16th Conf. on Accelera-

tor and Large Experimental Control Systems (ICALEPCS’17),

Barcelona, Spain, 2017, paper THAPL04, pp. 1091-1097.

[8] EPICS Archiver Appliance, http://slacmshankar.

github.io/epicsarchiver_docs/index.html

[9] Olog, http://olog.github.io/2.2.7-SNAPSHOT/

[10] Apache, https://httpd.apache.org/

[11] Flask, http://flask.pocoo.org/

[12] MongoDB, https://www.mongodb.com/

[13] PyMongo, https://pypi.org/project/pymongo/

[14] EPICS Modules, https://epics.anl.gov/modules/

index.php

[15] EPICS Extensions, https://epics.anl.gov/

extensions/index.php

[16] PCASPy, https://pypi.org/project/pcaspy/

[17] Basic Small Message Protocol, https://github.com/

lnls-sirius/control-system-constants/blob/

master/documentation/bsmp/protocol_v2-30_en_

US.pdf

[18] PyQt5, https://www.riverbankcomputing.com/

static/Docs/PyQt5/

[19] PyDM - Python Display Manager, https://slaclab.

github.io/pydm/

[20] Qt, https://doc.qt.io/

[21] PyEpics: Epics Channel Access for Python, https://

cars9.uchicago.edu/software/python/pyepics3/

[22] SLAC Lab Organization at Github, https://github.com/

slaclab

[23] CS-Studio, http://controlsystemstudio.org/

[24] EDM: Extensible Display Manager, https://www.slac.

stanford.edu/grp/cd/soft/epics/extensions/

edm/edm.html

[25] G. Portmann, J. Corbett, and A. Terebilo, “An accelerator

control middle layer using Matlab” in Proc. 2005 Particle

Accelerator Conference (PAC 2005), Knoxville, TN, USA,

2005, pp. 4009-4011. doi:10.1109/PAC.2005.1591699

[26] Accelerator Toolbox Collaboration, http://atcollab.

sourceforge.net/

[27] LabCA - EPICS/Channel Access Interface for Scilab and

Matlab, http://www.slac.stanford.edu/~strauman/

labca/index.html

[28] A. Terebilo, “Channel access client toolbox for Matlab”, in

Proc. 8th Int. Conf. on Accelerator and Large Experimental

Physics Control Systems (ICALEPCS 2001), San Jose, CA,

USA, Nov. 2001, paper THAP030, doi:10.2172/799983

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW003

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPGW003
2465

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I


