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Abstract
The Delta undulator has been operated successfully in

LCLS with full control of the polarization mode and K value
of the device. In LCLS II, a new Delta II undulator will be
based on a similar design but with some differences. In this
paper, we will present numerical simulation results that pro-
vide guidance to choose the geometric shape of the magnet
poles and define the required tolerance for assembling the
undulator magnets.

INTRODUCTION
The Delta II undulator is 3.28 m long with a period length

of 44 mm. Unlike the fixed magnet gap of the Delta undula-
tor[1–3] for LCLS, the K value of the Delta II undulator will
be adjusted by varying the gap of the device, which causes
some challenges in controlling mechanical tolerances and
alignment errors. The Delta undulator used round shape
tips for the magnet blocks. However, if a flat shaped magnet
tip can also meet the field requirement, it can be beneficial
to the development of the new device due to its simplicity
in obtaining high precision of production. To help in deter-
mining the final design of the magnet block of the Delta II
undulator, we compare the K values of the Delta II undulator
using several different magnet tip shapes, including a round
shape, a flat shape, and two triangular shapes, as show in
Fig. 1, where only one of the triangular poles is shown.

In an ideal undulator, the K parameter is constant along the
device axis. However, after the assembly of the 4 quadrants
of the original LCLS Delta undulator, systematic errors in
the radial position of the magnet arrays along the undulator
axis were observed[4, 5]. In order to establish tolerances,
we will consider two types of error in the placement of the
magnet row of the Delta II undulator: a quadrant bow and a
quadrant taper. In Radia [6] simulations, we add these errors
to the insertion device model for solving the magnet fields
with these effects.

MAGNET TIP GEOMETRY
The magnet blocks are generated in Radia using the built-

in function radObjThckPgn, and then form the full assembly
of four rows of magnet arrays. Two criteria have been used
to evaluate the performance of the Delta II undulator with
different tip shapes of the magnet block: first, the K value
at the minimum gap is required to be larger than 5.14, set
by the parameters of the LCLS II SXR undulator; second,
the transverse position dependence of K near the beam axis
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Figure 1: Magnet tip geometries used in the simulations.

needs to be as small as possible (K flatness). For studying
the second criterion, we calculate the transverse K values
along both x and y axes with an offset of 0.03 mm, 0.1 mm,
0.2 mm, 0.3 mm, 0.5 mm, and 1 mm, respectively.

The undulator K is derived from the first derivative of the
Phase Integral (PI), dPI/dz, electron mass me and charge
e, and speed of light c using the following formula with the
bracket denoting for taking arithmetic mean:

K =
e
√

2 < dPI/dz >
mec

, (1)

where PI is defined by:

PI(z) =
∫ z

0

[(∫ z̄

0
Bx( ¯̄z)d ¯̄z

)2

+

(∫ z̄

0
By( ¯̄z)d ¯̄z

)2]
dz̄, (2)

and is evaluated from Bx and By along a line parallel to
the beam axis at different offsets. For this study, we use an
undulator model consisting of 4 regular periods and the end
pieces, making the model much shorter than the actual de-
vice. Therefore, to overcome the influence of the fields from
end pieces, we adopt a moving window averaging technique
in calculating the PI and the mean of the first derivative of
PI, for only one core period around the center of the device.

The results for the circular polarization at minimum gap
are shown in Fig. 2. The legend in Fig. 2(b) can be used
to correlate the results with the shapes of the magnet tips.
Results in all cases exceed the required K value of 5.14. The
device simulated with round tips has the largest K values,
and the design with flat tips possesses the smallest K values,
while the K values for the two cases with triangular tips fall
in between. The on axis K value for a round tip is 5.62 in
comparison with the K value of 5.54 for a flat tip, or about
1.4% improvement. Therefore the gain of K is moderate. To
compare the flatness of K , in Fig. 2(b) and (d), we plot the
relative difference of K , in percent, from the beam axis as a
function of the offset. The results from different tip shapes
are very similar. On both, the x and the y axis, the flatness
crosses 0.01% at about 150 µm from the origin.
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Figure 2: Simulation results for circular polarization mode
at minimum gap.
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Figure 3: Simulation results for linear polarization at mini-
mum gap.

The simulation results for the linear polarization mode in
Fig. 3 are mostly similar to those for the circular polarization
mode except that, in Fig. 3(c), K decreases with y in contrast
to the opposite trends in Fig. 2(c). Another thing worth
noting is that the K flatness for the linear polarization is a bit
worse than that for the circular polarization. On both x and
y axis, it exceeds 0.01% with an offset less than 100 µm.

MECHANICAL TOLERANCES
As shown in Fig. 4, for quadrant bow, assuming that both

end blocks have zero radial offsets from the nominal position,
the maximum offset of the magnet pole, rbmax , occurs at the
center of the ID; for quadrant taper, we assume zero offset for
the first upstream block and the maximum offset r tmax at the
downstream end. In the Radia model, we add these errors for
solving the magnetic fields with these effects. In a PC with
64 GB memory, it was possible to simulate a Delta II model
with 70 core periods, but the computing time is usually more
than 24 hours. Therefore, for the tolerance study, we chose

Figure 4: Systematic errors of the magnet poles: (a) Bow
errors; (b) Taper errors.

a model with 50 core periods with a shorter computing time
of several hours. To characterize the effects of different
quadrant errors, we evaluated the phase shake, σdφ, the
standard deviation of the phase errors and the undulator
efficiency, χ, which will be defined in the following.

Phase Shake
Besides the core magnet blocks, each magnet row of the

Delta II undulator contains field matching magnet blocks
at both ends (7/8 period). In order to evaluate the effects
of quadrant errors on phase errors and phase shake, it is
desirable to exclude the end effects. After examining the
on-axis magnetic field, it appears that the magnet field of the
first and last 2-4 core periods is still affected by the end ef-
fects. After comparing the calculated results for phase shake
from simulation with that from the analytical formula[4]
with different numbers of core periods excluded from both
ends, it showed that, after taking out 4 core periods at each
end, the phase errors derived from numerical simulation are
nearly identical to the analytical results. Therefore, we will
calculate the phase errors after excluding the magnetic field
from the first and last four core periods. We will follow the
same approach for a numerical model with more than 50
core periods.
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Figure 5: Simulation results of the phase shake for Delta II
undulator with bow errors (left) or taper errors (right).

The phase shake is the standard deviation of the phase
errors, therefore, even when the phase errors show oppo-
site signs, the calculated values of phase shake always have
the same positive sign and are actually roughly equal for
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these two particular cases. For the convenience of the fitting
analysis, we arbitrarily choose to define the phase shake for
the undulator model with negative row errors, i.e rbmax or
r tmax<0, to have negative phase shake. This definition helps
in fitting the data with a straight line. In fact, the linear
relationship between the maximum row errors and the phase
shake applies to all the numerical configuration we set up
for the Delta II undulators.

Simulation results for all scenarios are shown in Fig. 5.
All four rows have the same quadrant errors in each simula-
tion. Several observations can be made from the comparison
of the results in Fig. 5. First, both types of row errors have
larger effects on the phase shake at the smaller gap com-
pared to the larger gap, which is intuitive because the same
geometric distortion on the magnet rows should introduce
more perturbations when the field strength is larger. Fur-
thermore, the taper errors introduce more phase shake than
the bow errors. For example, the taper error with maximum
amplitude of 40 µm leads to a phase shake of a bit over 8◦
vs. less than 6◦ for the bow error with the same maximum
amplitude for an ID at 6.6 mm gap. Lastly, one can note that
the polarization mode of the device plays a negligible role
here.

Undulator Efficiency
Delta II undulators will be placed after the micro-

bunching undulators and be operated in afterburner mode[3].
As a result, the lasing condition of the Delta II undulator
is dependent on the micro-bunching of the electron beam.
From the operating experience with the Delta undulator in
LCLS, the output laser power P appears to be a narrow band
resonance with respect to the K parameter of the undulator:

P = Pmaxe
−
(K−Kr )

2

2σ2
K , (3)

where Pmax represents the laser power at resonance, σK =

0.00982 from LCLS data, and Kr is the resonance undulator
parameter determined by the micro-bunching of the elec-
tron beam. When the undulator K varies with longitudinal
position, we can define the undulator efficiency, χ, as the
following:

χ =

∫
Pdz∫

Pmaxdz
=

∫
e
−
(K (z)−Kr )

2

2σ2
k dz∫

1 · dz
. (4)

During the operation of the Delta II undulator, the maxi-
mum undulator efficiency can be obtained by adjusting the
undulator gap. In this study, we want to learn, at a fixed
gap, the change of optimum undulator efficiency due to row
errors. For each simulation in Radia, the on-axis magnetic
field is sampled at a step size of 84.4 µm, or 535 samples per
undulator period. Therefore, for a given undulator model
with certain row errors, K(z) can be calculated at each grid
point and we can also numerically find the value of Kr that
makes χ maximum. We define the corresponding Kr as
effective undulator parameter Ke f f and the χ as optimum

undulator efficiency χopt for this device. Obviously, for an
ideal undulator with constant K along z, χopt=1, otherwise,
χopt<1. However, due to numerical noise and end effects,
the undulator K of a device without row errors still varies
by about 0.08%, which is enough to significantly reduce the
χopt . We believe that the variation of K can be reduced or
eliminated by adopting certain processing techniques. But
one should note that in the actual process of undulator tun-
ing, local perturbation to individual poles may introduce
similar effects on the undulator performance like the numer-
ical noise in the simulations. In this paper, we are trying to
determine the tolerance on bow/taper errors, so we want to
focus on their effects by normalizing the undulator efficiency
of the device with errors to that of the same device without
errors. Hence, we define the relative undulator efficiency:

χr =
χopt

χopt (rbmax = rbmax = 0)
. (5)

The effects of row errors on the relative undulator effi-
ciency χr are shown in Fig. 6. Similar to the results for
phase shake, the reduction of undulator efficiency due to the
row errors depends more on the magnet gap of the device
than the polarization. In order to maintain a high efficiency,
one has to keep tight control on the row errors. For example,
at minimum gap, it will be necessary to have a tolerance less
than 15 µm for an undulator efficiency over 90%. On the
other hand, for a mechanical tolerance of 40 µm, the undu-
lator efficiency drops to 50-60% depending on the types of
row errors.
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Figure 6: Simulation results of the undulator efficiency
for Delta II undulator with bow errors (left) or taper errors
(right).

CONCLUSION
We have developed numerical routines to study the perfor-

mance of the Delta II undulator with different tip geometry
and quadrant row errors. Simulation results suggest that
the flat shape design of the magnet tip should be sufficient
to meet the operational requirement. It also appears that
the quadrant errors have more pronounced effects on the
undulator efficiency than the phase shake.
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