THE LIMITED B-FIELD INTEGRAL OF SUPERCONDUCTING LONGITUDINAL GRADIENT BEND MAGNET*

Chao Chen, Lin Wang ${ }^{\dagger}$, Haoran Zhang, Tong Zhang,
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China

Abstract

The National Synchrotron Radiation Laboratory (NSRL) is planning a fourth generation diffraction-limited light source-Hefei Advanced Light Source (HALS), it is based on a seven-bend achromat lattice providing an ultralow natural emittance of 34 pm rad [1]. The emittance can be even lower with the use of longitudinal gradient bends (LGBs) and anti-bends (ABs). The designed energy for HALS is 2.4 GeV , superconducting LGB might be employed instead of normal bending magnet since it can improve radiated beam critical energy to hard x-ray regions without using up any straight sections [2]. To get a peak field about 6 T and small B-field profile full width half maximum, SLS-2 type LGB is considered [3]. In this paper, the limited B-field integral (along the beam path) is trying to be find with some restrictions.

INTRODUCTION

To simplify the simulation calculation, B-field is fully produced by coils without iron yoke. The structure of four coaxial superconducting coils are shown in Fig. 1. The inner coils are racetrack-shaped and can provide the peak B-field, the outer coils are circular and are used to guarantee the vertical B-field along the beam path would not reduce to negative within the longitudinal magnet length. In consideration of the immaturity of high temperature superconducting strands, NbTi and $\mathrm{Nb}_{3} \mathrm{Sn}$ strands will be used for outer and inner coils individually. When the vertical distance between the two inner coils and the peak vertical B-field are determinated, the vertical B-field integral can be adjusted by changing the cross profile of inner and outer coils. The focus of my work is to find its minimum value considering the current density of superconducting strands and simple analysis is presented below.

APPROXIMATE CALCULATION

This type LGB can be described by 9 parameters: the radius $r_{i n}$, the thickness $t_{i n}$, the height $h_{i n}$, the width $w_{i n}$ and the half horizontal length the inner coils; the radius $R_{\text {out }}$, the width $W_{\text {out }}$, the height $H_{\text {out }}$ and the thickness $T_{\text {out }}$ of

[^0]

Figure 1: The structure of coils, beam travels along the Z-axis.
the outer coils. We can get the B_{y} along the beam path:

$$
\begin{align*}
& B_{y}(x)= \\
& \frac{\mu_{0} J_{\text {in }}}{4 \pi} \int_{r_{\text {in }}}^{r_{\text {in }}+w_{\text {in }}} \int_{h_{\text {in }}}^{h_{\text {in }}+t_{\text {in }}} B_{\text {yin }}(r, h, x) d r d h+ \\
& \frac{\mu_{0} J_{\text {out }}}{4 \pi} \int_{R_{\text {out }}}^{R_{\text {out }}+W_{\text {out }}} \int_{H_{\text {out }}}^{H_{\text {out }}+T_{\text {out }}} B_{\text {yout }}(R, H, x) d R d H \tag{1}
\end{align*}
$$

while

$$
\begin{aligned}
& B_{y i n}(r, h, x)= \\
& \int_{-l_{\text {in }}}^{l_{\text {in }}} \frac{x+r}{\left(h^{2}+(x+r)^{2}+z^{2}\right)^{3 / 2}} d z- \\
& \int_{-l_{\text {in }}}^{l_{\text {in }}} \frac{x-r}{\left(h^{2}+(x-r)^{2}+z^{2}\right)^{3 / 2}} d z+ \\
& \int_{0}^{\pi} \frac{r(r-x \cos \theta+l \sin \theta)}{\left(h^{2}+r^{2}+x^{2}+l^{2}-2 r x \cos \theta+2 r l \sin \theta\right)^{3 / 2}} d \theta- \\
& \int_{\pi}^{2 \pi} \frac{r(r-x \cos \theta-l \sin \theta)}{\left(h^{2}+r^{2}+x^{2}+l^{2}-2 r x \cos \theta-2 r l \sin \theta\right)^{3 / 2}} d \theta
\end{aligned}
$$

and

$$
\begin{equation*}
B_{y o u t}(R, H, x)=\int_{0}^{2 \pi} \frac{R(R-x \cos \theta)}{\left(H^{2}+R^{2}+x^{2}-2 R x \cos \theta\right)^{3 / 2}} d \theta \tag{3}
\end{equation*}
$$

Figure 2: The parameters of inner coils are $r_{i n}=1, w_{i n}=2$, $h_{\text {in }}=3, t_{\text {in }}=6, l_{\text {in }}=10$ and $R_{\text {out }}=15, W_{\text {out }}=2, H_{\text {out }}=7, T_{\text {out }}=2$ for outer coils. The scale is centimeter.

ANALYSIS

The cross profiles of the coils are related to the limited vertical B-field integral obviously. To simplify the analysis, the inner coils and outer coils are simulated individually.
For inner coils, $w_{i n}, h_{i n}, t_{i n}$ and $l_{i n}$ are constant, $r_{i n}$ is variable; for the outer coils, $R_{\text {out }}, W_{\text {out }}, T_{\text {out }}$ are constant while $H_{\text {out }}$ is variable. The vertical B-field along the beam path changes with $r_{\text {in }}$ and $H_{\text {out }}$ is shown in Fig. 3. It is obvi-

Figure 3: Vertical B-field along the beam path of inner coils (left) and outer coils (right).
ously that $r_{i n}$ influences the FWHM significantly, and the lowest vertical B-field reduces with $r_{i n}$ increases. To get the diminishing positive B_{y}-field, $H_{\text {out }}$ should be adjusted to

[^0]: * Work supported by National Natural Science Foundation of China under contract No. 11775216.
 ${ }^{\dagger}$ Email: wanglin@ustc.edu.cn

