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Abstract

Iterative learning control (ILC) is an open loop control

strategy that improves the performance of a repetitive system

through learning from previous iterations. ILC can be used

to compensate for a repetitive disturbance like the beam load-

ing effect in resonators. In this work, we aim to use norm-

optimal ILC to cancel beam loading effect. Norm-optimal

ILC updates the control signal with the goal of minimizing a

performance index, which results in monotonic convergence.

Simulation results show that this controller improves beam

loading compensation compared to a PI controller.

INTRODUCTION

In a linear accelerator, such as a cavity resonator, the goal

is to establish and maintain a standing wave electromagnetic

field with constant amplitude and phase. A feedback con-

trol loop is responsible for maintaining constant amplitude

and phase despite various disturbances. The electromag-

netic field within the cavity can be assumed as stored energy.

When a bunch of particles passes through the cavity, a por-

tion of the energy is transferred from the field to the beam,

resulting in a drop in the accelerating field. This effect is

referred to as beam loading.

Feedback controllers are not fast enough to compensate

the beam loading effect. It is preferred to use feedforward

controllers to preemptively counteract with the energy drop

by increasing the cavity voltage just before the beam ar-

rival. At Japan Proton Accelerator Research complex (J-

PARC), a multi-harmonic RF feedforward system is used

to compensate beam loading in 3 GeV rapid cycling syn-

chrotron (RCS) [1]. The feedforward controller uses the

wall current monitor (WCM) to pick up the beam signal

Ibeam . The controller then generates an additional signal

equal to −Ibeam on top of the driving RF current. This

control system compensates the beam loading of the three

main harmonics (h = 2, 4, 6). In TESLA linear accelerator,

adaptive feedforward control is used to compensate the beam

loading and dynamic Lorentz force detuning [2].

In this work, we aim to use norm-optimal iterative learn-

ing control (NO-ILC) to cancel the beam loading effect. The

idea of iterative learning control (ILC) is to improve the

performance of a repetitive system through learning from

previous iterations. NO-ILC is a model based iterative ap-

proach to optimally update the control signal and reduce the

error monotonically. The control law is updated by mini-

mizing a performance index which penalizes the error and
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the difference between the control signal in two consecutive

iterations. NO-ILC has been used on Free Electron Laser

at DESY [3]. It guarantees that the error decreases mono-

tonically [4], and we can change the rate of convergence by

tuning parameters.

PROBLEM FORMULATION

The dynamical behavior of a cavity resonator is well

known in accelerator physics and can be described by [5]

d

dt

[
VI (t)

VQ (t)

]
=

[
−ωh −∆ω

∆ω −ωh

] [
VI (t)

VQ (t)

]
+

[
ωh 0

0 ωh

] [
uI (t)

uQ (t)

]
,

(1)

where VI and VQ are the real and imaginary parts of the

complex cavity voltage V , ωh is the half bandwidth of the

cavity, ∆ω is the detuning, and uI and uQ are the real and

imaginary parts of the complex driving voltage.

The cavity resonator dynamics can be reformulated as a

state space system as

ẋ(t) = Ax(t) + Bu(t)

y = Cx(t),
(2)

where the states,  input  and output are respectively given

by x(t) =

[
VI (t)

VQ (t)

]
, u(t) =

[
uI (t)

uQ (t)

]
and y(t) =

[
VI (t)

VQ (t)

]
,

and the state space matrices are introduced as follows

A =

[
−ωh −∆ω

∆ω −ωh

]

B =

[
ωh 0

0 ωh

]

C =

[
1 0

0 1

]
(3)

The transfer functions from the inputs to the outputs can

be found using G(s) = C(sI − A)−1B as

[
VI (s)

VQ (s)

]
=

1

D(s)



s
ωh
+ 1 −∆ω

ωh

∆ω

ωh

s
ωh
+ 1



[
uI (t)

uQ (t)

]
, (4)

with D(s) = ( s
ωh
+1)2

+(∆ω
ωh

)2 . This cavity model is valid

around the baseband frequency, for a single fundamental

mode (π-mode). This model will be used to develop the

NO-ILC.
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Figure 1: Block diagram of norm-optimal ILC.

Since NO-ILC includes both feedback and feedforward

mechanisms, it replaces the PI controller in the loop. A

block diagram of the control loop with NO-ILC is shown in

Figure 1.

The goal of the NO-ILC is to generate a control signal at

the k + 1 iteration uk+1 to minimize the performance index

given by

Jk+1(uk + 1) = ∥ek+1∥
2
+ ∥uk+1 − uk ∥

2, (5)

where ek+1 = r−yk+1 and r is the desired trajectory of the

output, and ∥.∥ represents the appropriate norms. In optimal

control, the norms are usually represented as quadratic forms

∥ek+1∥
2
= eTk+1Q(t)ek+1

∥uk+1 − uk ∥
2
= (uk+1 − uk )T R(t)(uk+1 − uk )

(6)

where Q(t) and R(t) are symmetric positive definite

weight matrices, which can be used as tuning parameters.

NO-ILC uses the error and state information from current

and previous trials to update the control signal and minimize

the performance index. This controller is implemented in

three steps [4].

In the first step, which is done offline, we find the ma-

trix gain K (t) as the solution of the discrete matrix Riccati

equation. This equation is solved backward on the time in-

terval t ∈ [0, N − 1] where we have the terminal condition

K (N ) = 0, and solve backward to find the previous gain

matrices. The Riccati equation is given by

K (t) = AT K (t + 1)A + CTQ(t + 1)C−

AT K (t + 1)B(BT K (t + 1)B + R(t + 1))−1BT K (t + 1)A

(7)

The second step, which is performed between the trials,

is calculating the feedforward term ζk+1(t). Again, we have

the terminal condition ζk+1(N ) = 0, and solve backward to

find the previous predictive terms. The feedforward term is

calculated using the matrix gain K (t) which was calculated

in the previous step, and the error information from the

previous trial as follows

QL 3840

f0 342 MHz

Ts 1 µs

N 1000

ωh 279800 rad/sec

∆ω 0.0628 rad/sec

Kp 0.04

Ki 0.3

Q 2

R 5

Table 1: Simulation Parameters

ζk+1(t) =(I + K (t)BR−1(t)BT )−1

(AT ζk+1(t + 1) + CTQ(t)ek (t))
(8)

Finally the third step, which is executed at each sampling

instant, updates the control signal as

uk+1(t) = uk (t)−

(BT K (t)B + R(t))−1BT K (t)A[xk+1(t) − xk (t)]+

R−1(t)BT ζk+1(t).

(9)

The updating law includes both a feedback and a feedfor-

ward component.

SIMULATION RESULTS

The block diagram in Figure 1 was simulated in Mat-

lab. The cavity was simulated as a multi-input multi-output

(MIMO) system. The simulation parameters are shown in
the Table 1.

In the table, QL is the loaded quality factor, f0 is the reso-

nance frequency, Ts is the sampling time, N is the number of

samples per iterations,ωh is the bandwidth of the cavity, ∆ω

is the detuning, Kp and Ki are the proportional and integral

gain of the PI controller respectively, and Q and R are used

to form the weighting matrices, which are assumed to be

time-independent.

Each iteration is assumed to last for 1 millisecond. The

RF pulse starts at N = 200 and ends at N = 800. The beam

loading, which is assumed to be a step disturbance at the

input of the cavity, starts at N = 400 and ends at N = 600.

The simulation is run once with only PI controller in the

loop, and once with NO-ILC. The performance of the system

in these two cases is compared in Figures 2 and 3.

Figure 2 shows the overall performance of the system

during one pulse, and Figure 3 is zoomed in to emphasize and

clearly show beam loading compensation after 30 iterations.

The simulation results show that NO-ILC can successfully

reject beam loading disturbance and the performance is more

satisfactory compared to the PI controller.
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Figure 2: Comparison of system performance for PI and 
NI-ILC after 30 iterations.

Figure 3: Comparison of beam loading compensation for PI 
and NO-ILC after 30 iterations.

CONCLUSIONS

Beam loading effect is a repetitive disturbance and a feed

forward controller can be used to deal with it faster than a

feedback loop. Iterative learning control is an open loop

control strategy that uses the error information from the

previous iteration to improve the control output at the current

iteration. In this work, we used NO-ILC to replace both

feedback and feedforward loops, monotonically decrease

the error and compensate for the beam loading disturbance

within 30 iterations.
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