VECTOR SUM & DIFFERENCE CONTROL OF SRF CAVITIES*

S. R. Koscielniak[†], TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. Canada V6T2A3

Abstract

We consider the ponderomotive instability of multiple superconducting RF cavities driven from a single RF source. We add vector difference control to the usual the technique of vector sum control, in order to increase the accelerating gradient threshold for ponderomotive instability.

INTRODUCTION

attribution to the author(s). High power RF sources are expensive, and it is more economical for one source to power several cavities. Vector -sum control, introduced [1,2,3,4] in the 1990's, is used to control their combined amplitude and phase against disturbances. The electro-magnetic (EM) fields within a sumaintain per-conducting radio frequency (SRF) cavity can be sufficiently strong to deform the cavity shape, which may lead must to a ponderomotive instability at high accelerating gradient. This must be stabilized by the RF controls.

work This paper was initially motivated by the discovery[5] of a ponderomotive instability in the TRIUMF ARIEL Ethis linac Accelerator Cryomodule, which has two SRF cavities of powered by a single klystron. The electron beam is acceldistribution erated on crest of the RF wave. The instability has several features: (i) it occurs at relatively modest gradient (8-9 MV/m); (ii) the individual cavity amplitudes oscillate in anti-phase; (iii) growth takes several seconds; (iv) detuning Any the cavity resonance frequency above the RF is not sufficient to stabilize; and (v) as the gradient is raised, and the 6. 201 instability approached, the range of stable tuning angles tends to zero. 0

The instability is believed to derive from two features: 3.0 licence (a) the heavily loaded cavity quality factor extends the cavity bandwidth to include a longitudinal mechanical mode at roughly 160 Hz; and (b) the linac, which employs vector BY sum control, operates in continuous wave (c.w.) mode, giving ample time for the development of an instability with 20 slow growth rate. Companion papers address the first feature (a), while this investigates the latter circumstance (b). terms of t Based on the analysis, it is believed the instability can be tamed by adding vector difference control.

Although originally motivated by the 2-cavity case, difunder the ference control is extensible to many cavities; and we shall present the 2-cavity and 3-cavity cases as examples.

TWO CAVITY SYSTEM

be used Consider two RF cavities, generator driven (GR), with may vector sum control. Take the basis vector

 $\boldsymbol{u} = \{av_1, pv_1, \tau\delta\omega_1, ag, pg, av_2, pv_2, \tau\delta\omega_2\}$

Here a,p are amplitude and phase modulation indices, and the subscript 1,2 is the cavity identifier; and v and g denote "voltage" (response) and "generator" (drive), respectively.

work

Figure 1: Cavity amplitude (red) and phase Ψ (blue).

 $\delta\omega_{1,2}$ are deviations in the cavity resonance frequency. The cavity loaded time constant and detuning angle are τ and Ψ , respectively. Phase convention shown in Fig. 1. Let *s* be the Laplace transform variable. The system matrix is $\mathbf{P} =$

$1 + s \tau_c$	Tan[⊈]	0	-1	–Tan[⊈]	0	0	0	ì
-Tan[⊈]	$1 + s \tau_c$	-1	Tan[⊈]	-1	0	0	0	l
0	<u>Kt[s]</u> 2	<u>1</u> 2	0	$-\frac{1}{2}K_{t}[s]$	0	0	0	
<u>Ka[s]</u> 2	0	0	1	0	<u>Ka[s]</u> 2	0	0	
0	$\frac{K_{p}[s]}{2}$	0	0	1	0	$\frac{K_{p}[s]}{2}$	0	
0	ē	0	-1	-Tan[⊈]	1 + S τ _c	Tan[⊈]	0	l
0	0	0	Tan[⊈]	-1	-Tan[⊈]	1 + S τ _c	-1	l
0	0	0	0	$-\frac{1}{2}K_{t}[s]$	0	<u>Kt[s]</u>	1	ļ

There are additional equations, one for each cavity, for the mechanical mode that participated in the ponderomotive instability. The product P.u is a set of equations arranged as a column vector that is equal to the **0**.

$$\begin{array}{c} - ag + (1 + s \tau_c) av_1 - pg Tan[\Psi] + pv_1 Tan[\Psi] \\ - pg + (1 + s \tau_c) pv_1 - \tau \, \delta\omega_1 + ag Tan[\Psi] - av_1 Tan[\Psi] \\ & \frac{\tau \, \delta\omega_1}{2} - \frac{1}{2} \, pg \, K_t[s] + \frac{1}{2} \, pv_1 \, K_t[s] \\ & ag + \frac{1}{2} \, av_1 \, K_a[s] + \frac{1}{2} \, av_2 \, K_a[s] \\ & pg + \frac{1}{2} \, pv_1 \, K_p[s] + \frac{1}{2} \, pv_2 \, K_p[s] \\ & -ag + (1 + s \, \tau_c) \, av_2 - pg Tan[\Psi] + pv_2 Tan[\Psi] \\ - pg + (1 + s \, \tau_c) \, pv_2 - \tau \, \delta\omega_2 + ag Tan[\Psi] - av_2 Tan[\Psi] \\ & \frac{\tau \, \delta\omega_2}{2} - \frac{1}{2} \, pg \, K_t[s] + \frac{1}{2} \, pv_2 \, K_t[s] \end{array}$$

Despite the apparent couplings between variables, the characteristic equation factors into two polynomials.

Change of Basis Vector

From the theory of linear (matrix) algebra, we know that the characteristic equation is independent of the vector basis. However, the structure of the matrix depends on the choice of basis vector. Thus, underlying symmetry can be made manifest by suitable choice of basis. For example, block-diagonal form may result if artificial cross-couplings are eliminated. But the characteristic polynomial will factor into product form if there is an underlying symmetry. whether or not the matrix was actually block-diagonalized.

from this * TRIUMF receives funding via a contribution agreement with the National Research Council of Canada

[†] shane@triumf.ca

Any linear superposition of the old bases, is also a basis. We transform to vector sum and difference coordinates:

$$\boldsymbol{v}_{s} = \{ \operatorname{av} = (\operatorname{av}_{1} + \operatorname{av}_{2})/2, \operatorname{pv} = (\operatorname{pv}_{1} + \operatorname{pv}_{2})/2, \delta\omega\tau \\ = (\tau\delta\omega_{1} + \tau\delta\omega_{2})/2 \} \\ \boldsymbol{v}_{d} = \{ \Delta\operatorname{av} = \operatorname{av}_{1} - \operatorname{av}_{2}, \Delta\operatorname{pv} = \operatorname{pv}_{1} - \operatorname{pv}_{2}, \tau\Delta\omega \\ = \tau\delta\omega_{1} - \tau\delta\omega_{2} \}$$

The new basis vector is $\boldsymbol{v} = \{\boldsymbol{v}_s, ag, pg, \boldsymbol{v}_d\}$. This transformation is generated by a matrix **T**. The new system matrix is $P'=T P T^{-1}$ equal to

$$\begin{bmatrix} 1 + s \tau_c & \text{Tan}[\Psi] & 0 & -1 & -\text{Tan}[\Psi] & 0 & 0 & 0 \\ -\text{Tan}[\Psi] & 1 + s \tau_c & -1 & \text{Tan}[\Psi] & -1 & 0 & 0 & 0 \\ 0 & \frac{K_t[S]}{2} & \frac{1}{2} & 0 & -\frac{1}{2} K_t[S] & 0 & 0 & 0 \\ 0 & \frac{K_t[S]}{2} & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & K_p[S] & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 + s \tau_c & \text{Tan}[\Psi] & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\text{Tan}[\Psi] & 1 + s \tau_c & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{K_t[S]}{2} & \frac{1}{2} \end{bmatrix}$$

P' is in block diagonal form, and the vector **P'**.v is partitioned $\{5,3\}$ and uncoupled:

$$\begin{pmatrix} -ag + av + av s \tau_c + (-pg + pv) Tan[\Psi] \\ -pg + pv - \delta\omega \tau + pv s \tau_c + (ag - av) Tan[\Psi] \\ \frac{1}{2} (\delta\omega \tau + (-pg + pv) K_t[s]) \\ ag + av K_a[s] \\ pg + pv K_p[s] \\ \Delta av + s \Delta av \tau_c + \Delta pv Tan[\Psi] \\ \Delta pv - \tau\Delta\omega + s \Delta pv \tau_c - \Delta av Tan[\Psi] \\ \frac{1}{2} (\tau\Delta\omega + \Delta pv K_t[s])$$

This partition remains possible even when unwanted but identical cross-couplings are introduced: for example, poor isolation between ports of the power divider or inter-cavity mechanics.

If we supplement the system equations with those of two mechanical modes (one for each cavity, and assumed identical), we find that they enter into **P'.v** in the same way: one mechanical resonator coupled to the sum av, and the other coupled to the difference Δav .

The first 5 equations are those of a virtual cavity with all control loops present, and which can benefit from the raised thresholds of the ponderomotive instability.

The last 3 equations are those of a virtual cavity with no control except the tuning loop; this "cavity" will encounter the ponderomotive instabilities at lower threshold accelerating gradient; indeed if the tuner is slow (or absent) the threshold is that for no control loops. In principle, this is the circumstance at the ARIEL e-linac; except that the cavities are run in self-excited (SE) loop.

N-CAVITY SYSTEM

The system of transformations described above can be applied to multiple cavities driven from a single RF source; and the result is the same: 1 virtual cavity with all loops present and N-1 cavities with no control except the tuner. This is a crucial point, because it means we can employ the ponderomotive stability criteria [6] for a single cavity. We have to generalize the concepts: there is 1 sum variable and N-1 difference variables. The differences are formed pairwise and cyclically permuted. The 3 cavity system will demonstrate the principle. The "old" base vector is $\boldsymbol{u} =$

 $\{av_1, pv_1, \tau\delta\omega_1, av_2, pv_2, \tau\delta\omega_2, av_3, pv_3, \tau\delta\omega_3, ag, pg\}$

doi:10.18429/JACoW-IPAC2019-THPRB009	DOI
The system matrix \mathbf{P} in this basis:	and
$(1+s\tau_c \operatorname{Tan}[\mathfrak{P}] = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	ler, i
$-\operatorname{Tan}[\underline{\Psi}] 1 + \operatorname{st}_{c} - 1 0 0 0 0 0 0 \operatorname{Tan}[\underline{\Psi}] - 1$ $0 \frac{K_{t}(s)}{1} 0 0 0 0 0 0 0 0 -\frac{1}{2} K_{t}[s]$	lish
3 3 0 0 1+sτ _c Tan[Φ] 0 0 0 -1 -Tan[Φ]	qnd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŗ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IOW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	of 1
$\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}$	itle
The relation between old (av_i , pv_i , $\delta\omega_i$) and new (Av _i , Pv _i ,	s), t
D _i) coordinates:	ior(
$v_s = {Av_1 = (av_1 + av_2 + av_3)/3, Pv_1}$	auth
$= (pv_1 + pv_2 + pv_3)/3, \tau O_1$	he
$= (\tau \delta \omega_1 + \tau \delta \omega_2 + \tau \delta \omega_3)/3\}$	to t
$\boldsymbol{v}_{\boldsymbol{d}} = \{ Av_2 = av_1 - av_3, Pv_2 = pv_1 - pv_3, \tau O_2 \}$	ion
$= \tau \delta \omega_1 - \tau \delta \omega_3, Av_3 = av_1 - av_2, Pv_3$	but
$= pv_1 - pv_2, \tau O_3 = \tau \delta \omega_1 - \tau \delta \omega_2 \}$	attri
$\boldsymbol{v} = \{\boldsymbol{v}_s, \boldsymbol{v}_d, ag, pg\}$	un a
The new system matrix is P'=T P T ⁻¹ :	ainta
1+sτ _c Tan[^Ω] 0 0 0 0 0 0 -1 -Tan[^Ω]	t m
$-\operatorname{Tan}[\overline{\Psi}] 1 + \mathbf{s} \mathbf{c}_{c} - 1 0 0 0 0 0 0 0 \operatorname{Tan}[\overline{\Psi}] -1$ $0 \frac{\mathbf{K}_{\mathbf{L}}(\mathbf{s})}{1} 0 $	unsi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k k
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	uis ,
0 0 0 0 0 0 0 $-\text{Tan}[\underline{x}]$ 1 + s τ_c -1 0 0	of th
	u c
$ \begin{pmatrix} n_{a}[s] & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & K_{p}[s] & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	utic
And vector P'.v is partitioned {5,3,3} and uncoupled. The	itrib
upper part represents a virtual cavity with all loops present:	dis
$($ (1 + s τ_c) Av ₂ + Pv ₂ Tan [Ψ])	Anv
$-\tau 0_2 + (1 + s \tau_c) Pv_2 - Av_2 Tan[\Psi]$	
$\frac{1}{2}(\tau 0_{1} + Pv_{2}K_{1}[s])$	015
	0
$(1 + S \tau_c) AV_3 + PV_3 [an][\Psi]$	ce (
$\left -\tau O_3 + (1 + \mathbf{S} \tau_c) P V_3 - A V_3 Tan[\Psi] \right $	Senc
$\left(\frac{1}{3} \left(\tau \mathbf{O}_3 + \mathbf{P} \mathbf{v}_3 \mathbf{K}_t [\mathbf{s}] \right) \right)$	0 lic
And the lower part represents two virtual cavities with no	7 3.(
oons except the tuner.	BY
$(1 + c + \lambda) = 0 = 0$	5
$\begin{pmatrix} (\mathbf{I} + \mathbf{S} \ \mathbf{L}_{c}) \ \mathbf{A}\mathbf{V}_{2} + \mathbf{P}\mathbf{V}_{2} \ \mathbf{I} \mathbf{d}\mathbf{I} \left[\mathbf{\Psi} \right] \\ \mathbf{T} \mathbf{O} = \begin{pmatrix} (\mathbf{I} + \mathbf{S} \ \mathbf{T}) \ \mathbf{D}\mathbf{V} \ \mathbf{A}\mathbf{V} \ \mathbf{T} \mathbf{D}\mathbf{V} \left[\mathbf{T} \mathbf{T} \right] \end{pmatrix}$	the
$\begin{bmatrix} -\tau \mathbf{U}_2 + (\mathbf{I} + \mathbf{S} \tau_c) \mathbf{P} \mathbf{V}_2 - \mathbf{A} \mathbf{V}_2 \text{ ran}[\Psi] \\ 1 c \mathbf{P} \mathbf{W}_2 - \mathbf{A} \mathbf{V}_2 \text{ ran}[\Psi] \end{bmatrix}$	of
$\frac{1}{3}$ ($\tau O_2 + PV_2 K_t [s]$)	rms
$(1 + s \tau_c) Av_3 + Pv_3 Tan [\Psi]$	teı
$-\tau 0_3 + (1 + s \tau_c) Pv_3 - Av_3 Tan[\Psi]$. the
$\frac{1}{2}$ ($\tau 0_3 + Pv_3 K_+ [s]$)	der
3	1 un
GENERAL CONSIDERATIONS	usec

$$\boldsymbol{v}_{s} = \{ Av_{1} = (av_{1} + av_{2} + av_{3})/3, Pv_{1} \\ = (pv_{1} + pv_{2} + pv_{3})/3, \tau O_{1} \\ = (\tau \delta \omega_{1} + \tau \delta \omega_{2} + \tau \delta \omega_{3})/3 \} \\ \boldsymbol{v}_{d} = \{ Av_{2} = av_{1} - av_{3}, Pv_{2} = pv_{1} - pv_{3}, \tau O_{2} \\ = \tau \delta \omega_{1} - \tau \delta \omega_{3}, Av_{3} = av_{1} - av_{2}, Pv_{3} \\ = pv_{1} - pv_{2}, \tau O_{3} = \tau \delta \omega_{1} - \tau \delta \omega_{2} \} \\ \boldsymbol{v} = \{ \boldsymbol{v}_{s}, \boldsymbol{v}_{d}, ag, pg \} \end{cases}$$

	-									
$1 + s \tau_c$	Tan[⊈]	0	0	0	0	0	0	0	-1	-Tan[⊈]
– Tan [🛛]	$1 + s \tau_c$	-1	0	0	0	0	0	0	Tan[₽]	-1
0	Kt[s] 3	1 3	0	0	0	0	0	0	0	- 1/3 Kt[s]
0	0	0	1 + S T c	Tan[⊈]	0	0	0	0	0	0
0	0	0	-Tan[₽]	$1 + 5 \tau_c$	-1	0	0	0	0	0
0	0	0	0	Kt[5] 3	1 3	0	0	0	0	0
0	0	0	0	0	0	$1 + 5 \tau_c$	Tan[⊈]	0	0	0
0	0	ø	0	0	0	-Tan[⊈]	$1 + s \tau_c$	-1	0	0
0	Ø	0	0	0	0	ø	Kt[\$] 3	<u>1</u> 3	0	0
K _a [s]	0	0	0	0	0	0	0	0	1	0
0	K _n [s]	0	0	0	0	0	0	0	0	1

$$\begin{pmatrix} (1 + s \tau_c) Av_2 + Pv_2 Tan[\Psi] \\ -\tau O_2 + (1 + s \tau_c) Pv_2 - Av_2 Tan[\Psi] \\ \frac{1}{3} (\tau O_2 + Pv_2 K_t[s]) \\ (1 + s \tau_c) Av_3 + Pv_3 Tan[\Psi] \\ -\tau O_3 + (1 + s \tau_c) Pv_3 - Av_3 Tan[\Psi] \\ \frac{1}{2} (\tau O_3 + Pv_3 K_t[s]) \end{pmatrix}$$

$$\begin{array}{c} (\mathbf{1} + \mathbf{s} \ \tau_c) \ \mathbf{A}\mathbf{v}_2 + \mathbf{P}\mathbf{v}_2 \ \mathrm{Tan} \left[\mathbf{\Psi} \right] \\ - \ \tau \ \mathbf{0}_2 + (\mathbf{1} + \mathbf{s} \ \tau_c) \ \mathbf{P}\mathbf{v}_2 - \mathbf{A}\mathbf{v}_2 \ \mathrm{Tan} \left[\mathbf{\Psi} \right] \\ \frac{1}{3} \ (\ \tau \ \mathbf{0}_2 + \mathbf{P}\mathbf{v}_2 \ \mathbf{K}_1 \left[\mathbf{s} \right]) \\ (\mathbf{1} + \mathbf{s} \ \tau_c) \ \mathbf{A}\mathbf{v}_3 + \mathbf{P}\mathbf{v}_3 \ \mathrm{Tan} \left[\mathbf{\Psi} \right] \\ - \ \tau \ \mathbf{0}_3 + (\mathbf{1} + \mathbf{s} \ \tau_c) \ \mathbf{P}\mathbf{v}_3 - \mathbf{A}\mathbf{v}_3 \ \mathrm{Tan} \left[\mathbf{\Psi} \right] \\ \frac{1}{2} \ (\ \tau \ \mathbf{0}_3 + \mathbf{P}\mathbf{v}_3 \ \mathbf{K}_1 \left[\mathbf{s} \right]) \end{array}$$

GENERAL CONSIDERATIONS

þe We have assumed identical cavities with identical (partially shared) control loops, & identical mechanical modes. This is not a far departure from reality: accelerator builders work 1 go to great lengths to make all components (as near as possible) identical (particularly the EM resonance frequencies his and drive/SEL frequencies).

Small splitting of the EM or mechanical resonance frequencies, does not change the picture - although it does break the degeneracy of the eigenfrequencies.

nay

other feedback. We adopt the notation of Ref. [6].

s with coefficients.

Here K_t stands in place of $(1+K_t)$.

Oscillatory Instability

threshold when $Tan[\Psi] < 0$, thus:

STABILITY OF CAVITY & TUNER We consider now the ponderomotive instability for a cavity equipped only with resonance tuning control and no

Suppose the tuner is "fast", i.e. has constant gain for sev-

eral decades. In such case, the characteristic is a quartic in

 $a_0 = Q\Omega^2 (K_t - 2K_L \operatorname{Tan}[\Psi] + \operatorname{Tan}[\Psi]^2)$

 $a_1 = \Omega(2K_t + Q\tau\Omega(1 + K_t) + 2\mathrm{Tan}[\Psi]^2)$ $a_2 = \tau \Omega (2 + Q\tau \Omega) + (Q + 2\tau \Omega) K_t + Q \operatorname{Tan}[\Psi]^2$

 $a_3 = \tau (Q + 2\tau \Omega + QK_t), a_4 = Q\tau^2$

The monotonic instability occurs for $a_0 < 0$ and $Tan[\Psi] > 0$,

 $K_L < (\operatorname{Cot}[\Psi]K_t + \operatorname{Tan}[\Psi])/2$

The fourth Routh determinant RH₄ implies an instability

leading to the threshold on Lorentz force detuning:

DOI

There is a generic and underlying problem with all "vector sum of many cavities" type of control: $V_1 + V_2 + V_3 + ... V_N = 0$ is a valid solution with all V_i non- $V_1 = V_2 + V_3 + ... V_N = 0$ is a valid solution with all V_i non-(t=0) prevail $V_1 = V_2 = V_3 \dots = V_N$. But for long-pulse and c.w. operation [7], any slow-growth rate instabilities which of can cause the individual Vi to become independently modtitle ulated will become manifest.

A Simple Solution

to the author(s) The loops are ineffective for the difference variables (V1-V2, etc). Restoring control over individual Vi, implies introducing control that is different between the cavities, without destroying "vector sum". Form of the equations implies that the only place to do this is at the cavity tuners.

attribution The first action is to make the tuning loop "fast", i.e. tuner time constant T much less than cavity time τ , and maintain push the tuner gain towards its limit (see below); this will raise the monotonic instability threshold.

Exotic/Speculative Solutions

must If simple means is not enough to secure desired gradient, work then we could investigate new/unusual couplings and/or symmetry breaking. For example, with 2 cavities:

- Cross-coupling: control of $\Delta \omega = \delta \omega_1 \delta \omega_2$ based on feedback of $\Delta av = av_1 - av_2$
- Any distribution of this • Symmetry breaking: tuning control $\delta\omega_1$ propto pv_1 and $\delta\omega_2$ propto av_2 ; Or AC couplings $\delta\omega_1$ propto $(pv_1 - pv_2)$ and $\delta\omega_2$ propto (av₁ – av₂).

The latter are speculative, and perhaps too asymmetric. We pursue the cross-coupling a little further. The basis vector 2019). is $\{av_1, pv_1, \tau\delta\omega_1, av_2, pv_2, \tau\delta\omega_2, av_3, pv_3, \tau\delta\omega_3, ag, pg\}$. The coupling from amplitude to resonance frequency is 0 K_{ta}[s]. The column vector **P.u** is:

$$\begin{pmatrix} -ag + (1 + s \tau_c) av_1 - pg Tan[\Psi] + pv_1 Tan[\Psi] \\ -pg - \delta\omega_1 \tau_c + (1 + s \tau_c) pv_1 + ag Tan[\Psi] - av_1 Tan[\Psi] \\ \frac{\delta\omega_1 \tau_c}{2} - \frac{1}{2} pg K_t[S] + \frac{1}{2} pv_1 K_t[S] + \frac{1}{2} av_1 K_{ta}[S] - \frac{1}{2} av_2 K_{ta}[S] \\ ag + \frac{1}{2} av_1 K_a[S] + \frac{1}{2} av_2 K_a[S] \\ pg + \frac{1}{2} pv_1 K_p[S] + \frac{1}{2} pv_2 K_p[S] \\ -ag + (1 + s \tau_c) av_2 - pg Tan[\Psi] + pv_2 Tan[\Psi] \\ -pg - \delta\omega_2 \tau_c + (1 + s \tau_c) pv_2 + ag Tan[\Psi] - av_2 Tan[\Psi] \\ \frac{\delta\omega_2 \tau_c}{2} - \frac{1}{2} pg K_t[S] + \frac{1}{2} pv_2 K_t[S] - \frac{1}{2} av_1 K_{ta}[S] + \frac{1}{2} av_2 K_{ta}[S] \end{pmatrix}$$

from this work may be used under the terms of the CC BY 3.0 licence (After transforming to the sum and difference basis, the column vector \mathbf{P}' .v is partitioned $\{5,3\}$ and uncoupled:

$$\begin{pmatrix} -a_g + a_v + s \tau_c a_v + (-p_g + p_v) \operatorname{Tan}[\Psi] == 0 \\ -\delta\omega \tau_c - p_g + p_v + s \tau_c p_v - (-a_g + a_v) \operatorname{Tan}[\Psi] == 0 \\ \delta\omega \tau_c + (-p_g + p_v) K_{\tau_c}[s] == 0 \\ a_g + a_v K_a[s] == 0 \\ p_g + p_v K_\rho[s] == 0 \\ \Delta a_v + s \tau_c \Delta a_v + \Delta p_v \operatorname{Tan}[\Psi] == 0 \\ -\Delta\omega \tau_c + \Delta p_v + s \tau_c \Delta p_v - \Delta a_v \operatorname{Tan}[\Psi] == 0 \\ \Delta\omega \tau_c + 2\Delta a_v K_{ta}[s] + \Delta p_v K_{\tau_c}[s] == 0 \end{pmatrix}$$

The lower portion, in the difference variables, has an additional term in the resonance frequency feedback that provides greater flexibility of control.

$$K_{L}\{Q\rho(Q + 2\rho + QK_{t})^{2}\}/(1 + K_{t}) < -\{(Q^{2} + 2Cot[\Psi]^{2}((2 - Q^{2})\rho^{2} + Q^{2}K_{t} + Q\rho(1 + K_{t})) + (Q + \rho(2 + Q\rho))Cot[\Psi]^{4} (2\rho K_{t} + O(\rho^{2} + K^{2}))\}Tan[\Psi]^{3}$$

₽]³ $(2\rho K_t + Q(\rho^2 + K_t^2)))$ Here $\rho = \tau \Omega$ where Ω is mechanical resonance frequency. We consider illustrative cases in the limit of large gain and mechanical quality factor Q.

Classical regime
$$\rho \approx Q$$

 $K_L < -\frac{\text{Cot}[\Psi](Q^2 + K_t^2)}{K_t} - \frac{2(-Q^2 + 2K_t)\text{Tan}[\Psi]}{Q^2K_t} - \frac{\text{Tan}[\Psi]^3}{Q^2K_t}$
Heavily loaded regime $\rho \approx 1$
 $K_L < -\frac{2\text{Cot}[\Psi]K_t}{Q} - \frac{2\text{Tan}[\Psi]}{Q} - \frac{\text{Tan}[\Psi]^3}{QK_t}$
Intermediate regime $\rho = \sqrt{Q}$
 $K_L < -\frac{\text{Cot}[\Psi](Q^{3/2} + 2K_t + \sqrt{Q}K_t^2)}{QK_t}$
 $-\frac{2(-Q^{3/2} + K_t + \sqrt{Q}K_t)\text{Tan}[\Psi]}{Q^2K_t} - \frac{\text{Tan}[\Psi]^3}{Q^{3/2}K_t}$

Slow Tuner

The slow tuner is modelled as $K_t/(1+sT)$. In such case, the characteristic is a quintic. Ideally, in the absence of Lorentz force effects, the system response is damped and nonoscillatory. Such case leads to a limit on the gain: $K_t \leq$ $\frac{(T+\tau)^2}{T}$. The minimum occurs when T= τ . Large gain is permitted when T>> τ or T<< τ . The former/latter pushes roots toward s= $-1/\tau$ and s = $-Q/\tau$ respectively. So T< τ is preferred. Both polynomial coefficients a₀ and a₁ can lead to instability when Tan[Ψ]>0. The monotonic case a₀<0 always occurs before a₁<0 provided that $T \leq \tau$. The Routh determinants RH4 and RH5 can both produce instability for Tan[Ψ]<0.

CONCLUSION

We have provided a comprehensive analysis of the ponderomotive stability of multiple SRF cavities driven from a single source. We introduced vector-difference control in order to improve the stability.

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

REFERENCES

- K. Akai, *et al*, "RF System for the Superconducting Cavities in TRINSTAN Main Ring", Particle Accelerators, 1990, Vol. 29, pp.11-16.
- [2] H.-D. Graaf, "Experience with Control of Frequency, Amplitude and Phase", in *Proc. of the Fifth Workshop on RF Superconductivity*, DESY, Hamburg, Germany, Aug 1991, paper SRF91D04, pp. 317-333.
- [3] S.N. Simrock, "Experience With Control of Frequency, Amplitude & Phase", in *Proc. of the Sixth Workshop on RF Superconductivity*, CEBAF, Newport News, Virginia, USA Oct 1993, paper SRF93D03, pp. 294-306.
- [4] T. Schilcher, "Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities", Doctoral Thesis, University of Hamburg (1998).
- [5] S.R. Koscielniak et al: "Status and Issues (Microphonics, LFD, MPS) with TRIUMF ARIEL e-Linac Commissioning", in *Proc. 29th Linear Accelerator Conf. (LINAC'18)*, Beijing, China, Sep. 2018, pp. 286-291, doi:10.18429/JA-CoW-LINAC2018-TU1A03
- [6] S.R. Koscielniak, "Ponderomotive Instability of Generator-Driven Cavity", in Proc. 10th International Particle Accelerator conference (IPAC'19), Melbourne, Australia, May 2019, paper THPRB010, this conference.
- [7] C. Schmidt and S. Simrock, "Concept of Vector-Sum control for CW-Operation", in *Proc. 41st Advanced ICFA Beam Dynamics Workshop on Energy Recovery Linacs* (ERL'07), Daresbury, UK May 2007, paper 37, pp. 80-84.