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Abstract 
We consider the ponderomotive instability of multiple 

superconducting RF cavities driven from a single RF sour-
ce. We add vector difference control to the usual the tech-
nique of vector sum control, in order to increase the accel-
erating gradient threshold for ponderomotive instability.  

INTRODUCTION 
High power RF sources are expensive, and it is more 

economical for one source to power several cavities. Vec-
tor -sum control, introduced [1,2,3,4] in the 1990’s, is used 
to control their combined amplitude and phase against dis-
turbances. The electro-magnetic (EM) fields within a su-
per-conducting radio frequency (SRF) cavity can be suffi-
ciently strong to deform the cavity shape, which may lead 
to a ponderomotive instability at high accelerating gradi-
ent. This must be stabilized by the RF controls. 

This paper was initially motivated by the discovery[5] of 
a ponderomotive instability in the TRIUMF ARIEL E-
linac Accelerator Cryomodule, which has two SRF cavities 
powered by a single klystron. The electron beam is accel-
erated on crest of the RF wave. The instability has several  
features: (i) it occurs at relatively modest gradient (8-9 
MV/m); (ii) the individual cavity amplitudes oscillate in 
anti-phase; (iii) growth takes several seconds; (iv) detuning 
the cavity resonance frequency above the RF is not suffi-
cient to stabilize; and (v) as the gradient is raised, and the 
instability approached, the range of stable tuning angles 
tends to zero.  

The instability is believed to derive from two features: 
(a) the heavily loaded cavity quality factor extends the cav-
ity bandwidth to include a longitudinal mechanical mode 
at roughly 160 Hz; and (b) the linac, which employs vector 
sum control, operates in continuous wave (c.w.) mode, giv-
ing ample time for the development of an instability with 
slow growth rate. Companion papers address the first fea-
ture (a), while this investigates the latter circumstance (b). 
Based on the analysis, it is believed the instability can be 
tamed by adding vector difference control.  

Although originally motivated by the 2-cavity case, dif-
ference control is extensible to many cavities; and we shall 
present the 2-cavity and 3-cavity cases as examples. 

TWO CAVITY SYSTEM 
Consider two RF cavities, generator driven (GR), with 

vector sum control. Take the basis vector  
𝒖 = {av&, pv&, 𝜏δω&, ag,pg, av-, pv-, 𝜏δω-} 

Here a,p are amplitude and phase modulation indices, and 
the subscript 1,2 is the cavity identifier; and v and g denote 
“voltage” (response) and “generator” (drive), respectively.  

 
Figure 1: Cavity amplitude (red) and phase Ψ (blue). 

δω&,- are deviations in the cavity resonance frequency. 
The cavity loaded time constant and detuning angle are τ 
and Ψ, respectively. Phase convention shown in Fig. 1. 
Let s be the Laplace transform variable.  
The system matrix is P = 

 
There are additional equations, one for each cavity, for the 
mechanical mode that participated in the ponderomotive 
instability. The product P.u is a set of equations arranged 
as a column vector that is equal to the 0. 

 
Despite the apparent couplings between variables, the 
characteristic equation factors into two polynomials. 

Change of Basis Vector 
From the theory of linear (matrix) algebra, we know that 

the characteristic equation is independent of the vector ba-
sis. However, the structure of the matrix depends on the 
choice of basis vector. Thus, underlying symmetry can be 
made manifest by suitable choice of basis. For example, 
block-diagonal form may result if artificial cross-couplings 
are eliminated. But the characteristic polynomial will fac-
tor into product form if there is an underlying symmetry, 
whether or not the matrix was actually block-diagonalized.  

 _________________________________________  
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Any linear superposition of the old bases, is also a basis. 
We transform to vector sum and difference coordinates: 
𝒗𝒔 = {av = (av& + av-)/2,pv = (pv& + pv-)/2, δω𝜏

= (𝜏δω& + 𝜏δω-)/2} 
𝒗𝒅 = {Δav = av& − av-, Δpv = pv& − pv-, τΔω

= 𝜏δω& − 𝜏δω-} 
The new basis vector is 𝒗 = {𝒗𝒔, 𝑎𝑔, 𝑝𝑔, 𝒗𝒅}.  
This transformation is generated by a matrix T. 
The new system matrix is P’=T P T-1 equal to 

P’ is in block diagonal form, and the vector P’.v is parti-
tioned {5,3} and uncoupled: 

This partition remains possible even when unwanted but 
identical cross-couplings are introduced: for example, poor 
isolation between ports of the power divider or inter-cavity 
mechanics.  

If we supplement the system equations with those of two 
mechanical modes (one for each cavity, and assumed iden-
tical), we find that they enter into P’.v in the same way: 
one mechanical resonator coupled to the sum av, and the 
other coupled to the difference Δav. 

The first 5 equations are those of a virtual cavity with all 
control loops present, and which can benefit from the 
raised thresholds of the ponderomotive instability.  

The last 3 equations are those of a virtual cavity with no 
control except the tuning loop; this “cavity” will encounter 
the ponderomotive instabilities at lower threshold acceler-
ating gradient; indeed if the tuner is slow (or absent) the 
threshold is that for no control loops. In principle, this is 
the circumstance at the ARIEL e-linac; except that the cav-
ities are run in self-excited (SE) loop. 

N-CAVITY SYSTEM 
The system of transformations described above can be 

applied to multiple cavities driven from a single RF source; 
and the result is the same: 1 virtual cavity with all loops 
present and N-1 cavities with no control except the tuner.  
This is a crucial point, because it means we can employ the 
ponderomotive stability criteria [6] for a single cavity. 
We have to generalize the concepts: there is 1 sum variable 
and N-1 difference variables. The differences are formed 
pairwise and cyclically permuted. The 3 cavity system will 
demonstrate the principle. The “old” base vector is 𝒖 = 
{av&,pv&, 𝜏δω&, av-, pv-, 𝜏δω-, av=, pv=, 𝜏δω=, ag, pg} 

The system matrix P in this basis: 

The relation between old (avi, pvi, δωi) and new (Avi, Pvi, 
Oi ) coordinates: 

𝒗𝒔 = {Av& = (av& + av- + av=)/3, Pv&
= (pv& + pv- + pv=)/3, 𝜏𝑂&
= (𝜏δω& + 𝜏δω- + 𝜏δω=)/3} 

𝒗𝒅 = {Av- = av& − av=, Pv- = pv& − pv=, 𝜏𝑂-
= 𝜏δω& − 𝜏δω=, Av= = av& − av-, Pv=
= pv& − pv-, 𝜏𝑂= = 𝜏δω& − 𝜏δω-} 
𝒗 = {𝒗𝒔, 𝒗𝒅, 𝑎𝑔, 𝑝𝑔} 

The new system matrix is P’=T P T-1: 

And vector P’.v is partitioned {5,3,3} and uncoupled. The 
upper part represents a virtual cavity with all loops present: 

And the lower part represents two virtual cavities with no 
loops except the tuner.  

GENERAL CONSIDERATIONS 
We have assumed identical cavities with identical (par-

tially shared) control loops, & identical mechanical modes. 
This is not a far departure from reality: accelerator builders 
go to great lengths to make all components (as near as pos-
sible) identical (particularly the EM resonance frequencies 
and drive/SEL frequencies). 

Small splitting of the EM or mechanical resonance fre-
quencies, does not change the picture – although it does 
break the degeneracy of the eigenfrequencies.  
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A General Problem 
There is a generic and underlying problem with all “vec-

tor sum of many cavities” type of control: 
V1 +V2 +V3 + …VN =0 is a valid solution with all Vi non-
zero. For short pulse operation, the initial conditions at 
(t=0) prevail V1 =V2 =V3 … =VN. But for long-pulse and 
c.w. operation [7], any slow-growth rate instabilities which 
can cause the individual Vi to become independently mod-
ulated will become manifest. 

A Simple Solution 
The loops are ineffective for the difference variables 

(V1-V2, etc). Restoring control over individual Vi, implies 
introducing control that is different between the cavities, 
without destroying “vector sum”. Form of the equations 
implies that the only place to do this is at the cavity tuners. 

The first action is to make the tuning loop “fast”, i.e. 
tuner time constant T much less than cavity time τ, and 
push the tuner gain towards its limit (see below); this will 
raise the monotonic instability threshold.  

Exotic/Speculative Solutions 
If simple means is not enough to secure desired gradient, 

then we could investigate new/unusual couplings and/or 
symmetry breaking. For example, with 2 cavities: 
§ Cross-coupling:  control of Δω = δω& − δω- based on

feedback of Δav = av& − av-
§ Symmetry breaking: tuning control δω1 propto pv1 and
δω2 propto av2; Or AC couplings δω1 propto (pv1 – pv2)
and δω2 propto (av1 – av2).

The latter are speculative, and perhaps too asymmetric. We 
pursue the cross-coupling a little further. The basis vector 
is {av&, pv&, 𝜏δω&, av-, pv-, 𝜏δω-, av=,pv=, 𝜏δω=, ag, pg}. 
The coupling from amplitude to resonance frequency is 
Kta[s]. The column vector P.u is: 

After transforming to the sum and difference basis, the col-
umn vector P’.v is partitioned {5,3} and uncoupled:  

The lower portion, in the difference variables, has an addi-
tional term in the resonance frequency feedback that pro-
vides greater flexibility of control. 

STABILITY OF CAVITY & TUNER 
We consider now the ponderomotive instability for a 

cavity equipped only with resonance tuning control and no 
other feedback. We adopt the notation of Ref. [6]. 

Suppose the tuner is “fast”, i.e. has constant gain for sev-
eral decades. In such case, the characteristic is a quartic in 
s with coefficients. 

𝑎B = 𝑄𝛺-(𝐾F − 2𝐾GTan[𝛹] + Tan[𝛹]-) 
𝑎& = 𝛺(2𝐾F + 𝑄𝜏𝛺(1 + 𝐾F) + 2Tan[𝛹]-) 

𝑎- = 𝜏𝛺(2 + 𝑄𝜏𝛺) + (𝑄 + 2𝜏𝛺)𝐾F + 𝑄Tan[𝛹]- 
𝑎= = 𝜏(𝑄 + 2𝜏𝛺 + 𝑄𝐾F), 𝑎N = 𝑄𝜏- 

Here Kt stands in place of (1+Kt). 
The monotonic instability occurs for a0<0 and Tan[Ψ]>0, 
leading to the threshold on Lorentz force detuning: 

𝐾G < (Cot[𝛹]𝐾F + Tan[𝛹])/2 

Oscillatory Instability 
The fourth Routh determinant RH4 implies an instability 
threshold when Tan[Ψ]<0, thus: 
𝐾G{𝑄𝜌(𝑄 + 2𝜌 + 𝑄𝐾F)-}/(1+ 𝐾F) < 
−{(𝑄- + 2Cot[𝛹]-((2− 𝑄-)𝜌- + 𝑄-𝐾F + 𝑄𝜌(1 + 𝐾F))

+ (𝑄 + 𝜌(2 + 𝑄𝜌))Cot[𝛹]N 
(2𝜌𝐾F + 𝑄(𝜌- + 𝐾F-)))}Tan[𝛹]= 

Here ρ = τ Ω where Ω is mechanical resonance frequency. 
We consider illustrative cases in the limit of large gain and 
mechanical quality factor Q. 

Classical regime  ρ ≈ Q 

𝐾G < −
Cot[𝛹](𝑄- + 𝐾F-)

𝐾F
−
2(−𝑄- + 2𝐾F)Tan[𝛹]

𝑄-𝐾F
−
Tan[𝛹]=

𝑄-𝐾F
Heavily loaded regime ρ ≈ 1 

𝐾G < −
2Cot[𝛹]𝐾F

𝑄 −
2Tan[𝛹]

𝑄 −
Tan[𝛹]=

𝑄𝐾F
Intermediate regime  𝜌 = T𝑄 

𝐾G < −
Cot[𝛹](𝑄= -⁄ + 2𝐾F + T𝑄𝐾F-)

𝑄𝐾F

−
2(−𝑄= -⁄ + 𝐾F + T𝑄𝐾F)Tan[𝛹]

𝑄-𝐾F
−
Tan[𝛹]=

𝑄= -⁄ 𝐾F

Slow Tuner 
The slow tuner is modelled as Kt/(1+sT). In such case, 

the characteristic is a quintic. Ideally, in the absence of Lo-
rentz force effects, the system response is damped and non-
oscillatory. Such case leads to a limit on the gain: 𝐾F ≤
(WXY)Z

NWY
. The minimum occurs when T=τ. Large gain is per-

mitted when T>>τ or T<<τ. The former/latter pushes roots 
toward s= -1/τ and s = -Q/τ respectively. So T<τ is pre-
ferred. Both polynomial coefficients a0 and a1 can lead to 
instability when Tan[Ψ]>0. The monotonic case a0<0 al-
ways occurs before a1<0 provided that T ≤ τ. The Routh 
determinants RH4 and RH5 can both produce instability for 
Tan[Ψ]<0. 

CONCLUSION 
We have provided a comprehensive analysis of the pon-

deromotive stability of multiple SRF cavities driven from 
a single source. We introduced vector-difference control in 
order to improve the stability. 
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