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Abstract 
The electro-magnetic (EM) fields within a super-con-

ducting radio frequency (SRF) cavity can be sufficiently 
strong to deform the cavity shape, which may lead to a pon-
deromotive instability. Stability criteria for the self-excited  
mode of cavity operation were given in 1978 by Delayen. 
The treatment was based on the Routh-Hurwitz analysis of 
the characteristic polynomial. With the Wolfram modern 
analytical tool, 'Mathematica', we revisit the criteria for an 
SRF cavity equipped with amplitude and phase loops and 
a single microphonic mechanical mode.  

INTRODUCTION 
Whereas generator driven RF cavity systems have been 

used for charged-particle acceleration for nearly a century, 
self-excited (SE) resonance has been considered [1,2] for 
only three decades. SE has two-parameters (Θ,Ψ) and is 
less intuitive.  Our starting point is the masterful exposition 
by Delayen [2]. It must be emphasized that SE loop is an 
enabling technology for SRF. The EM resonance width is 
exceedingly small compared with the excitation frequency; 
so, without prior knowledge, finding (and driving) the res-
onance can be difficult until its location is known. And, of 
course, Lorentz force detuning (LFD) will change the res-
onant frequency as the amplitude is increased. A numerical 
treatment is given by Joshi [3]. 

Basics 
The SE loop is essentially a narrow band resonator 

equipped with positive feedback. The loop contains the res-
onator, a near-linear amplifier, an adjustable phase shifter, 
and a limiter and attenuator to control the amplitude.  
The resonator has loaded quality factor and time constant 
Qc and τ, respectively. The loop phase is initially adjusted 
to be 2nπ at the resonance frequency ωc with n integer. The 
shifter then introduces an addition phase ΘL. The loop re-
sponds by oscillating at the SE frequency ω, given by: 

2Tan[𝛩']𝜔[𝑡] = −𝜏(𝜔/0 − 𝜔[𝑡]0) 
Here it is assumed that ωc has already the static LFD in-
cluded and compensated. 

In contra-distinction to generator driven (GD), it is im-
portant to understand that ΘL is the “cause” and ω is the 
“effect”. In SE mode, the excitation amplitude is self-sta-
bilized. Following Delayen, we begin by considering the 
stability of the SE oscillator with no control loops. Let v[t] 
and vg[t] be the cavity voltage and equivalent generator 
voltage. They are governed by: 

𝜔/0𝑣[𝑡] +
2𝑣4[𝑡]
𝜏 + 𝑣44[𝑡] =

2𝑣54[𝑡]
𝜏  

where primes denote time derivatives.  

We write the voltages in the following forms:  
{𝑣 = 𝑒89[:]𝑉[𝑡], 𝑣5 = 𝑒8=>?89[:]𝑉5[𝑡],𝜔[𝑡] = 𝛷4[𝑡]} 

with the steady state (denoted subscript 0) conditions: 
𝑉BC = Sec[𝛩']𝑉C 

We now introduce deviations from the steady state,  
G𝑉[𝑡] → V0 + δV[𝑡], 𝑉5[𝑡] → Vg0 + δVg[𝑡]M 
{𝜔/0 → (δωµ+𝜔/)0,𝜔[𝑡] → δw[𝑡] + 𝜔[𝑡]} 

where δωµ is dynamic LFD. 
We suppose the EM resonator to be coupled to a mechan-

ical mode (of the RF cavity) having quality factor Q and 
resonance frequency Ω. This mode gives a static LFD  
ΔωR = −𝑘R𝑉C0 < 0. The normalized (dimensionless) cou-
pling constant is 𝐾' = 2𝜏𝑘R𝑉C0 > 0. 

We linearize the equations of motion, and take the La-
place transform w.r.t. frequency-like variable s. We intro-
duce the vector 𝒖 = {𝑎Y, δω, 𝑎5, δωµ} where av and ag are 
amplitude modulation indices. The system matrix is P = 

 
and the condition P.u=0 leads to the characteristic determi-
nant and polynomial in s. Delayen discards the term in 
Tan[Θ]/ω as being small. This is not self-consistent, be-
cause in the following we shall see that Tan[Θ] may be as 
large as 4Qc which is in principle very large for an SRF 
cavity. Nevertheless, we set Tan[Θ]/ω=0. 

Depending on precisely which terms in s we retain, the 
polynomial may be a monomial, cubic, quartic or quantic. 
We present the conditions arising from each of these 
choices. All the terms {−𝑠/𝜔, −(𝑠^2	𝜏)/2𝜔, 𝑠𝜏/2𝜔} are 
small; if they are all neglected, then the coupling to the me-
chanical mode and to Tan[Θ] both disappear leading to a 
damped cavity response 1 + 𝑠𝜏 = 0. If we retain only the 
small term −𝑠/𝜔, column 1 row 2, the result is the same. 

Cubic 
If we retain only the small term 𝑠𝜏/(2𝜔), row 1 col 2, 

the result is a cubic  𝑎C + 𝑠𝑎_ + 𝑠0𝑎0 + 𝑠`𝑎`. The term a0 
does not contain KL or Tan[Θ], so there is no monotonic 
instability. {a1, a2, a3} all contain Tan[Θ], but only a1 con-
tains KL. Sufficient conditions for all coefficients ai>0 and 
Routh determinants RHj >0 are Tan[Θ] < 4Qc and 𝐾' <

0a
bc

 
and KL << 4Qc. 

Quartic 
If we retain only the two small terms	{−𝑠/𝜔, 𝑠𝜏/2𝜔} the 

result is a quartic 𝑎C + 𝑠𝑎_ + 𝑠0𝑎0 + 𝑠`𝑎` + 𝑠d𝑎d. {a0, a4} 
 ________________________________________  
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do not contain KL or Tan[Θ], so there is no monotonic in-
stability. {a1, a2, a3} all contain Tan[Θ], but only a1 contains 
KL. Sufficient condition for all ai>0 is Tan[Θ] < 4Qc. 

Sufficient condition for all RHj>0 is 𝐾' <
a
bc

. Alterna-

tively, Tan[Θ] < 3Qc and 𝐾' <
0a
bc

 is sufficient. Generally: 
{2𝑄0𝜔𝛺𝐾'} < 8𝜔𝛺𝑄/ + 4𝑄(𝜔0 + 4𝛺0𝑄/0) − 2𝛺(𝜔

+ 4𝑄𝛺𝑄/)Tan[𝛩'] + 𝑄𝛺0Tan[𝛩']0 

Quintic 
Retaining all small terms leads to a quintic. This case is 

treated by Delayen. The coefficients are: 
{𝑎C = 4𝑄𝜔0𝛺0,𝑎d = 2𝑄 + 𝜏𝛺, 𝑎i = 𝑄𝜏} 

𝑎_ = 2𝜔𝛺(2𝜔(1 + 𝑄𝜏𝛺) − 𝑄𝛺𝐾' − 𝑄𝛺Tan[𝛩']) 
𝑎0 = 4𝜏𝜔0𝛺 + 2𝑄(2𝜔0 + 𝛺0)− 2𝜔𝛺Tan[𝛩'] 
𝑎` = 2𝛺 + 𝑄𝜏(4𝜔0 + 𝛺0)− 2𝑄𝜔Tan[𝛩'] 

Sufficient condition for all ai>0 is Tan[Θ] < 4Qc. 
When Tan[Θ] =0, RH3 & RH4 >0 automatically, leaving 

RH5 to determine stability. Delayen gives 

𝐾' < 2𝜏𝜔 +
2𝜔
𝑄𝛺 −

2𝑄𝜏𝜔
𝑄 + 𝜏𝛺 =

2𝜔
𝑄𝛺 + 4𝑄/ −

4𝑄𝜔𝑄/
𝑄𝜔 + 2𝛺𝑄/

 

More accurately, we find: 

𝐾' < 2𝜏𝜔 +
2𝜔
𝑄𝛺 −

2𝑄𝜏𝜔(4𝑄 + 𝜏𝛺)
(2𝑄 + 𝜏𝛺)0 =

=
2𝜔
𝑄𝛺 + 4𝑄/ −

2𝑄𝜔𝑄/(2𝑄𝜔 + 𝛺𝑄/)
(𝑄𝜔 +𝛺𝑄/)0

 

The expressions for limiting KL agree to leading order. 
Consider now non-zero loop phase, ΘL ≠ 0. Sufficient 

condition for RH3 & RH4 >0 is Tan[Θ] < 2Qc. The fifth 
Routh determinant, RH5, is the most challenging. When 
Tan[Θ] < 2Qc, a sufficient condition is 𝐾' < 𝑄/ . This cor-
responds to a very large static LFD of ΔωR = −a

d
.  

Two points are noted: (i) in contra-distinction to GD, the 
microphonic does not un-couple when Tan[Θ]=0; (ii) a0 
does not contain KL so there is no monotonic instability. 

The general conclusion is that SE-oscillator without con-
trol loops will not encounter a ponderomotive instability. 
Moreover, the stability limits that derive from the small 
terms {−𝑠/𝜔,−(𝑠^2	𝜏)/2𝜔, 𝑠𝜏/2𝜔} are so far away that 
we may as well neglect them all, and recover the matrix P= 

⎝

⎜
⎛

1+ 𝑠𝜏 0 −1 0
Tan[𝛩'] 𝜏 −Tan[𝛩'] −𝜏

0 0 1 0
𝐾'
𝜏 0 0 1 +

𝑠0

𝛺0 +
𝑠
𝑄𝛺⎠

⎟
⎞

 

PHASE & AMPLITUDE LOCK 
We must lock our SE oscillator to an external reference 

for the frequency and amplitude. Following Delayen, the 
loop is modified to include quadrature control, B[t]. The 
equivalent generator voltage becomes: 

𝑣5 = 𝑒8=>?89[p](1 + 𝑖𝐵[𝜏])𝑉5[𝜏] 
The dynamical equations for the resonator become: 

𝜏𝜔/0𝑉[𝜏] − 𝜏𝑉[𝜏]𝜔[𝜏]0 =
= −2𝐵[𝜏]Cos[𝛩']𝜔[𝜏]𝑉5[𝜏]
− 2Sin[𝛩']𝜔[𝜏]𝑉5[𝜏] 

𝑉[𝜏]𝜔[𝜏] + 𝜏𝜔[𝜏]𝑉4[𝜏] =
= Cos[𝛩']𝜔[𝜏]𝑉5[𝜏]
− 𝐵[𝜏]Sin[𝛩']𝜔[𝜏]𝑉5[𝜏] 

Here ω[t] is the loop frequency when B is present. In the 
steady state it is equal to the reference frequency defined 
by 2Tan[𝛹]𝜔[𝜏] = +𝜏(𝜔/0 − 𝜔[𝜏]0). Note the sign is re-
versed compared with Delayen; we chose the convention 
to agree with the generator driven case following Schulze 
[4]. We introduce the static values: 
𝐵C = −Tan[𝛩 +𝛹] and 𝑉BC = Cos[𝛹 + 𝛩']Sec[𝛹]𝑉C 
We then consider small perturbations in the dynamical 

variables, linearize about the steady state, and Laplace 
transform. There is a new state vector  
𝒖 = {𝑎Y, δω, 𝑎5, δB, δωµ} and system matrix P = 

 

High Gain Phase Loop 
The SE oscillator with a high gain phase loop, locked to 

an external frequency is the analogue of the GD case. For 
simplicity, we take the feedback to be a perfect integrator 
of the frequency deviation. The matrix elements P[row,col] 
=P[4,2]=P[4,5]=F/s where F>0 is constant. 

In the absence of the microphonic (KL = 0), the charac-
teristic is quadratic. Examination of the coefficients aI 
show the conditions {𝛩 → −𝛹, 𝛩 → 𝛹, 𝛩 → 𝜋/2 −𝛹} to 
be good, poor, and disastrous, respectively. 

When KL >0, there is a quartic in s. For example, the DC 
term: 𝑎C = 𝐹𝑄𝛺0Cos[𝛹 + 𝛩']Sec[𝛹] 

(Cos[𝛩'] + Sin[𝛩'](2𝐾' − Tan[𝛹])) 
In the regime of interest, {Cos[𝛩 +𝛹] > 0, Cos[𝛩] >

0}, but this still leaves four combinations: 
• Both below resonance {Tan[𝛹] > 0, Sin[𝛩] < 0} 
• Both above resonance {Tan[𝛹] < 0, Sin[𝛩] > 0} 
• One low, one high {Tan[𝛹] > 0, Sin[𝛩] > 0} 
• One high, one low {Tan[𝛹] < 0, Sin[𝛩] < 0}. 
Low/low gives the monotonic instability. High/high 

gives the oscillatory instability. The mixed cases may give 
instabilities also. For simplicity and brevity, we present 
only the low/low and high/high cases; but experimentalists 
beware the mixed cases! 

Monotonic instability (low/low) From the coefficient 
a0>0, we find the threshold: 

2𝐾' < (−Cot[𝛩'] + Tan[𝛹]) 
Substituting 𝛩 → −𝛹, yields the GD threshold: 

𝐾' < Csc[2𝛹] 
All other ai>0 automatically. 

Oscillatory instability (high/high)  All Routh de-
terminants except RH4 are greater than zero. RH4>0 is 
challenging to analyse. RH4 is linear in KL, so we can write 
RH4 = k0+k1×KL where kj are functions of F and the EM 
and MM resonator parameters. KL is then the quotient -
k0/k1. We expand this in inverse powers of F>>1.  

Let 𝜌 = 𝜏𝛺. The threshold leading terms are:  
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𝐾' <
(𝑄 + 𝜌 + 𝑄𝜌0)Cot[𝛩']

2𝑄0𝜌 −
(2𝑄 + 𝜌)Tan[𝛹]

2𝑄0𝜌

+
Tan[𝛹]0Tan[𝛩']

2𝑄𝜌  

(Delayen gives a similar expression, but has the wrong sign 
for the term linear in Tan[𝛹].) The next to leading order 
terms are: 

(𝑄 + 𝜌 + 𝑄𝜌0)Cos[𝛹]Csc[𝛩']Sec[𝛹 + 𝛩']
2𝐹𝑄`

+
(−𝑄 − 𝜌 + 2𝑄0𝜌)Sec[𝛩']Sec[𝛹 + 𝛩']Sin[𝛹]

2𝐹𝑄`  

The special case 𝛩 → −𝛹 can be treated exactly. 
 

{−2𝑄𝜌(𝑄 + 𝐹𝑄 + 𝜌)0𝐾'Tan[𝛹]} < 
(𝑄 + 𝜌 +𝑄𝜌0)(𝐹0𝑄 + 𝐹𝜌 + 𝑄𝜌0) + 𝐹(𝐹𝑄(𝑄 + 𝜌) + 𝜌(𝑄 + 𝜌

− 2𝑄0𝜌) + 𝐹𝑄0Sec[𝛹]0)Tan[𝛹]0 

PHASE & AMPLITUDE LOOPS 
For simplicity, we take the amplitude feedback to be pure 

proportional to av. The matrix elements P[4,2]=P[4,5] =F/s 
and P[row,col] =P[3,1] =A where A>0 is constant. This re-
sults in a quartic characteristic equation. 

Tan[ΘL] =0 
Let us point out immediately that setting ΘL identically 

zero, has the effect that all coefficients ai and all Routh de-
terminants RHj are automatically greater than zero pro-
vided A, F, Q, ρ=τΩ all >0. In such case B0= -Tan[Ψ]. In 
this special, but important, case KL and Tan[Ψ] are absent 
from all ai & RHj.  (This happens because we omitted the 
small couplings {−𝑠/𝜔, −(𝑠^2	𝜏)/2𝜔, 𝑠𝜏/2𝜔}.) So ΘL=0 
is the ideal regime; but inevitably there are phase and/or 
detuning errors, so we move toward the general case. 

Tan[ΘL] +Tan[Ψ] =0 
The next most simple case is Θ +Ψ=0, or B0=0. This con-

dition means that the setpoint for the feedback is zero, but 
whatever signal arrives it must be added in quadrature. 

In this case, we need consider the stability only as a func-
tion of Ψ, which is related to the difference of reference 
and SE-oscillation frequencies. 

Monotonic condition  The term a0 may change 
sign when Tan[Ψ]>0, leading to the threshold: 0 < 𝐾' <
(1 + 𝐴)Csc[2𝛹]. So amplitude feedback has a significant 
beneficial effect for operation below resonance. 

Oscillatory condition   All other ai and RHj are au-
tomatically >0, except for 

 
 RH4=  
(𝐴 + 𝐹)(𝐴𝑝 + (𝐴0 + 𝑝0)𝑄)(𝐹𝑝 + (𝐹0 + 𝑝0)𝑄) + 
𝐹Tan[𝛹](2𝑄𝜌((𝐴 + 𝐹)𝑄 + 𝜌)0𝐾' + 𝐴(𝐴 + 𝐹)((𝐴

+ 𝐹)𝑄𝜌 + 𝜌0 + 𝑄0(𝐴𝐹 − 2𝜌0)
+ 𝐴𝐹𝑄0Sec[𝛹]0)Tan[𝛹]) 

 
which may become negative when Tan[Ψ]<0. Here, for 
brevity, A stands in place of (A+1). 

General Case 
There are two parameters (Θ ,Ψ) leading to four combi-

nations: low-low, high-high, low-high, high-low as above. 
It simplifies matters to stipulate Cos[𝛩 +𝛹]Sec[𝛹] > 0, 
so that cavity and generator V and Vg have the same sign.  
First we find conditions for ai>0: 

 Low-low High-high Low-high High-low 
a0 × √ mixed mixed 
a1 √ √ CotΘ>TanΨ CotΘ<TanΨ 
a2 √ √ CotΘ>TanΨ CotΘ<TanΨ 
a3 √ √ √ √ 
Monotonic condition  In particular, below reso-

nance, Tan[𝛹] > 0&	Tan[𝛩] < 0 we find the threshold 
condition: 

−2𝐾' < (1 + 𝐴)Cos[𝛹 + 𝛩']Csc[𝛩']Sec[𝛹] 
But generally it is more complicated, see Fig.1, which 
shows also the mixed cases. 
 

 
Figure 1: regions a0>0 shown white, a0 <0 coloured. Ab-
scissa Ψ, ordinate Θ. Left/right = low/high Lorentz cou-
pling. The classical monotonic regime is the lower right 
quadrant. 
 

Oscillatory condition  Now we consider the 
Routh determinants, only above and below resonance: 
RH3>0 always, but RH4 may change sign and the paramet-
ric behaviour is complicated. The asymptotic expansion 
(1/F →0) used above does not give simple results when 
A>0, because the felicitous cancellations do not occur. The 
working is lengthy and reveals that the meaning of “very 
large gains” is F≥Q2 and A≥Q2 in order to cover the range 
of ρ=[1, Q]. 

Although Mathematica® can calculate RH4 exactly, to 
obtain an expression short enough for this paper we must 
introduce some approximations. In the region |Θ|≤ π/4 and 
|Ψ|≤π/4, Cos[𝛹 + 𝛩']Sec[𝛹] has average value 0.9, so we 
replace the matrix elements as P[1,4]=Tan[Θ] and P[2,4] = 
-1. RH4 >0 yields the upper limit on LFD detuning: 

{2𝐹𝑝𝑄(𝑝 + (𝐴 + 𝐹)𝑄)0𝐾'} < 
(𝐴 + 𝐹)((𝐴𝜌 + 𝑄(𝐴0 + 𝜌0))(𝐹𝜌 + 𝑄(𝐹0 + 𝜌0))Cot[𝛩'] 
+𝐴𝐹Tan[𝛹](−(𝐴 + 𝐹)𝑄𝜌 − 𝜌0 + 2𝑄0(−𝐴𝐹 + 𝜌0)

+ 𝐴𝐹𝑄0Tan[𝛹]Tan[𝛩'])) 

CONCLUSION 
Following Delayen, we have rederived, corrected, and 

extended the criteria for avoiding ponderomotive instabili-
ties for a self-excited cavity operating with phase and am-
plitude loops. The criteria are rather similar to those of a 
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generator driven RF cavity, particularly when Θ+Ψ=0. We 
draw attention to the mixed cases where simplistic tuning 
above or below resonance may be insufficient for stability. 
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