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Abstract

The Microbunched Electron Cooling (MBEC) [1] is a

promising cooling technique that can find applications in

future hadron and electron-ion colliders. A 1D model of

MBEC has been recently developed in Ref. [2, 3]. This

model predicts the cooling time below two hours for eRHIC

255 GeV proton beams, when two amplification sections are

used in the cooling system. In this work, we go beyond the

1D model of Ref. [2] and develop a realistic 3D theory of

MBEC. We derive an analytical expression for the cooling

rate. Our analytical results are in reasonable agreement with

computer simulations.

INTRODUCTION

The idea of coherent electron cooling has been originally

proposed by Ya. Derbenev [4] as a way to achieve cool-

ing rates higher than those provided by the traditional elec-

tron cooling technique [5, 6]. The mechanism of the co-

herent cooling can be understood in a simple setup shown

in Fig. 1. An electron beam with the same relativistic γ-
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Figure 1: Schematic of the microbunched electron cooling

system. Blue lines show the path of the electron beam, and

the red lines indicate the trajectory of the hadron beam.

factor as the hadron beam co-propagates with the hadrons

in a section of length Lm called the “modulator”. In this

section, the hadrons imprint microscopic energy perturba-

tions onto the electrons via the Coulomb force. After the

modulation, the electron beam passes through a dispersive

chicane section, R
(e)

56
, where the energy modulation of the

electrons is transformed into a density fluctuation referred to

as “microbunching”1. Meanwhile, the hadron beam passes

through its dispersive section, R
(h)

56
, in which more energetic

particles move in the forward direction with respect to their

original positions in the beam, while the less energetic parti-

cles trail behind. When the beams are combined again in a

section of length Lk called the “kicker”, the electric field of

∗ Work supported by the Department of Energy, contract DE-AC02-

76SF00515
† stupakov@slac.stanford.edu
1 In a long modulator section the microbunching can be generated directly

in the modulator when the energy modulation is converted into a density

fluctuation through plasma oscillations [7].

the induced density fluctuations in the electron beam acts

back on the hadrons. With a proper choice of the chicane

strengths, the energy change of the hadrons in the kicker

leads, over many passages through the cooling section, to a

gradual decrease of the energy spread of the hadron beam.

The transverse cooling is achieved in the same scheme by

introducing dispersion in the kicker for the hadron beam.

In most cases, the cooling rate in the simple setup shown

in Fig. 1 is not fast enough for practical applications. It can

be considerably increased if the fluctuations in the electron

beam are amplified on the way from the modulator to the

kicker. Following an earlier study by Schneidmiller and

Yurkov [8] of microbunching dynamics for generation of

coherent radiation, Ratner proposed a broadband amplifica-

tion mechanism [1] in which the amplification is achieved

through a sequence of drifts and chicanes such that the den-

sity perturbations in the drifts execute a quarter-wavelength

plasma oscillation. A detailed theory of the amplification in

MBEC is recently published in Ref. [3].

Previous analysis of MBEC in Refs. [1–3] used a 1D

model of particle interaction in which particles are replaced

by thin slices in the beam. In this paper we will develop a

3D theory for the Microbunched Electron Cooling (MBEC)

where particles are treated as point charges and compare its

results with the 1D model.

MBEC COOLING IN 3D

In the 1D model of MBEC in Ref. [2] we replaced point

charges of the hadron and electron beams by charged sheets

with a Gaussian charge distribution in the transverse direc-

tion. The force fz between a hadron with charge Ze and an

electron with charge −e in this model is given by

fz = −
Ze2

Σ2
Φ

( zγ

Σ

)

, (1)

where z = ze − zh is the distance between the charges, Σ

is the rms transverse size of the beams (which are assumed

axisymmetric and of the same cross section), and the expres-

sion for the function Φ can be found in [2]. The coordinates

ze for the electron and zh for the hadron are measured along

the longitudinal axis of the beams. As was shown in Ref. [2],

the cooling rate in the system shown in Fig. 1 is expressed

in terms of the imaginary part of the effective impedance

Z1D(̹),

ImZ1D(̹) = −
4IeLmLk

cΣ2γ3IAσe
qe̹e−̹

2q2
e/2H2

1D (̹) , (2)

where ̹ = kΣ/γ is the dimensionless wave number, Ie is

the electron beam current, IA = mec3/e = 17 kA is the
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Alfvén current, σe is the rms electron relative energy spread,

qe = R
(e)

56
σeγ/Σ, with the function H defined as

H1D(̹) =

∫ ∞

0

dξ Φ(ξ) sin(̹ξ). (3)

The cooling rate of hadrons is

N−1
c = −

2qhrhc

πΣσh

∫ ∞

0

̹ d̹ ImZ1D(̹) e−̹
2q2

h
/2, (4)

where Nc is the cooling time in the number of the revolution

periods, rh = (Ze)2/mhc2, σh is the rms relative energy

spread of hadrons and qh = R
(h)

56
σhγ/Σ.

It is now straightforward to generalize the 1D approach

to a 3D one. We just need to replace the interaction force of

slices (1) with the longitudinal Coulomb force of relativistic

point charges moving in z-direction,

fz = −Ze2 zγ

(x2
+ y2

+ γ2z2)3/2
, (5)

where x = xe − xh and y = ye − yh with xe, ye the electron

coordinates and xh, yh the hadron coordinates in the Carte-

sian coordinate system. This equation can be also written

as

fz = −
Ze2

Σ2
Φ3D

( r

Σ
,

zγ

Σ

)

where r =
√

x2
+ y2 and Φ3D(ρ, ζ) = ζ(ρ

2
+ ζ2)−3/2. Re-

spectively, function H1D in Eq. (3) is now replaced by

H3D(ρ,̹) =

∫ ∞

0

dζ Φ3D(ρ, ζ) sin(̹ζ). (6)

Note that using Eq. (5) for the interaction force we ignore

the relative particle motion during the interaction which

becomes more important at small distances. We also ignore

the polarization effects that tend to shield the interaction (the

Debye shielding) at large distances.

The square of the function H1D in Eq. (2) comes from

two events of the particle interaction: the first one is in the

modulator and the second one in the kicker. In the derivation

of the cooling rate (4), it was assumed that the particles

do not change their relative longitudinal positions when

they propagate from the modulator to the kicker, and hence

their interaction force is the same in these two places. This

assumption cannot be justified in 3D, where the transverse

particles’ coordinates in the modulator, xM
e , y

M
e and xM

h
, yM

h

will likely change to different values xKe , y
K
e and xK

h
, yK

h

in the kicker due to the betatron oscillations in the path

connecting these two regions2. With account of this fact, the

function H2
1D

(̹) in Eq. (2) should be replaced by

〈H3D

(

1

Σ

√

(xM
e − xM

h
)2 + (yMe − y

M
h
)2,̹

)

× H3D

(

1

Σ

√

(xKe − xK
h
)2 + (yKe − y

K
h
)2,̹

)

〉 (7)

2 Here we assume that xM
e , yM

e and xM

h
, yM

h
do not change through the

length of the modulator, which is true if the modulator length is much

smaller than the period of the betatron oscillations. The same assumption

is made with regard to the kicker.

where the angular brackets denote averaging over the Gaus-

sian transverse distribution functions of the hadrons and

electrons in the modulator. In this formula the kicker coordi-

nates are functions of the modulator ones: xKe (xM
e , y

M
e ),

y
K
e (x

M
e , y

M
e ), xK

h
(xM

h
, yM

h
), y

K
h
(xM

h
, yM

h
) which are deter-

mined by the optics between the modulator and the kicker.

With this replacement of the H2
1D

by Eq. (7) we obtain the

cooling rate in the 3D geometry.

SIMPLIFIED MODEL OF ZERO

BETATRON PHASE ADVANCE

Using Eq. (7) requires the knowledge of the beam optics

in the MBEC cooler which is not currently available. It

makes sense then to consider a special case of the betatron

phase advance between the modulator and the kicker equal

to 2πn (for both electrons and hadrons), where n is an in-

teger, and with the equal beta functions in the modulator

and the kicker. This means that the transverse coordinates

of electrons and hadrons in the modulator and the kicker

are the same. Dropping the superscripts M and K in the

transverse coordinates we then need to calculate the func-

tion 〈H3D

(

1
Σ

√

(xe − xh)2 + (ye − yh)2,̹
)2

〉 and substitute

it into Eq. (2). The angular bracket in this expression de-

note averaging over the distribution functions of hadrons

and electrons.

Using Eq. (6) and the formula for Φ3D(ρ, ζ) it is easy to

find that H3D(ρ,̹) = ̹K0(ρ̹). For averaging of H2
3D

we

will use the Gaussian distribution functions for electrons,

fe(xe, ye) = (2πΣ2)−1e−(x
2
e+y

2
e )/2Σ

2

, and the same function

for the hadrons, fh(xh, yh) = (2πΣ2)−1e−(x
2
h
+y2

h
)/2Σ2

, which

means that both beams have the same transverse size Σ in

x and y directions. Then the averaged value is given by the

following integral:

〈H2
3D〉 =

̹
2

(2π)2

∫

dx̂ed ŷedx̂hd ŷhe−(x̂
2
e+ŷ

2
e )/2e−(x̂

2
h
+ŷ2

h
)/2

× K2
0

(

̹

(

(x̂e − x̂h)
2
+ (ŷe − ŷh)

2
)1/2

)

, (8)

where the hat variables are the coordinates normalized by Σ.

The plot of this function computed numerically is shown in

Fig. 2. For comparison we also show the plot of the function

H2
1D

(̹) from 1D theory.

Replacing H2
1D

(̹) in Eq. (2) by 〈H2
3D

〉 and substituting

the result in Eq. (4) we obtain the following formula for the

cooling rate in 3D,

N−1
c =

8IeLmLkrhqhqe

πΣ3γ3IAσeσh

∫ ∞

0

̹
2d̹e−̹

2(q2
e+q

2
h
)/2〈H2

3D〉.

(9)

Note first, that because the 3D H-function is larger than the

1D one the cooling rate in 3D is faster that the one estimated

in Ref. [2]. Also note a remarkable difference in the behav-

ior of this two functions for ̹ ≫ 1: when H2
1D

decreases

(as 1/̹2) in this limit, its 3D analog tends to a constant
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Figure 2: Plot of 〈H2

3D
〉 and H2

1D
as functions of ̹.

value (one can show that this value is equal to 1
4
). The finite

value of 〈H2
3D

〉 in the limit ̹→ ∞ qualitatively changes the

behavior of the cooling rate as a function of the dimension-

less chicane strengths qe and qh: in 1D there is an optimal

value for these parameters, but in 3D, as follows from the

analysis of Eq. (9), the cooling rate increases without limit

when qh,qe → 0 (because the integral
∫ ∞

0
̹

2 d̹ 〈H2
3D

〉 di-

verges). This seemingly strange dependence is explained in

the following way. Large values of ̹ correspond to close

interactions of the particles, and due to the singular behavior

of the force (5) at small distances these near collisions con-

tribute considerable amount to the cooling rate. In reality,

this effect would disappear when one would take into ac-

count that the particles shift during the interaction (and also

when the assumption of the phase advance 2πn is dropped).

COMPARISON WITH COMPUTER

SIMULATIONS

We carried out computer simulations of the cooling rate

to compare it with our theoretical analysis. The computer

model is described in Ref. [2] — it was modified to add

the transverse coordinates and the force (5). The transverse

positions of the particles in both beams were randomly as-

signed from a Gaussian distribution with the rms width Σ.

We also added to the code a control parameter ǫ to elim-

inate the effect of strong interaction of particles at small

distances: an interaction between a hadrons and an electron

was turned off if the distance between them was too small,

(xh − xe)
2
+ (yh − ye)

2
+ (zh − ze)

2γ2 < ǫΣ2. The results of

the simulations for different values of the parameters ǫ are

shown in Fig. 3 as a function of the dimensionless chicane

strength qh = qe = q. The simulations were carried out

for zero (or, equivalently, 2πn) phase advance between the

modulator and the kicker, that is for xKe = xM
e y

K
e = y

M
e

and xK
h
= xM

h
and y

K
h
= y

M
h

. Three values of the parameter

ǫ were used: 0.01, 0.005 and zero. The smaller values of ǫ

required more averaging in the runs. Note that the cooling

time monotonically decreases together with q in contrast to

the 1D model of Ref. [2], as predicted by Eq. (9).

We also did simulations for the case of the relative phase

advance (between the hadrons and electrons) µ = π. In this

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼
◼ ◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼
◼ ◼

◼ ◼ ◼
◼

◼
◼ ◼

◼ ◼

- ϵ=0.01◼
- ϵ=0.005◼
- ϵ=0◼
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�
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Figure 3: Comparison of the cooling time Nc given by Eq. (9)

(solid curve) with simulations (color symbols).

case the interacting particles that happen to be close in the

modulator, go to opposite transverse positions in the kicker.

More specifically, we assumed that xKe = −xM
e y

K
e = −yMe

and xK
h
= xM

h
and y

K
h
= y

M
h

. Remarkably, after calculating

the average given by Eq. (7) we found that numerically it

coincides with H2
1D

. This conclusion is also confirmed by

numerical simulations of the 3D case shown in Fig. 4. In

◼
◼

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼

��� ��� ��� ��� ��� ����

�

�

�

�

��

�

� �
(�
��
)

Figure 4: Cooling time Nc for the case µ = π (solid curve)

in comparison with simulations (color symbols).

contrast to the case µ = 2πn, the cooling time now has a

minimum (at q = 0.6), exactly as in the case of the 1D

model.

SUMMARY

In this work, we extended the 1D model of Ref. [2] to

three dimensions. We showed that the cooling rate derived

in 1D can also be used in 3D if the spectral form of the

interaction function between charged slices is replaced by the

Fourier transformed Coulomb force between point charges.

In addition, the 3D functions need to be properly averaged

over the transverse cross section of the beam. We found

that for the case of 2πn phase advance the cooling time

approaching zero in the limit R56 → 0. We also discovered

that in the case of µ = π the 3D model gives the same cooling

rate as the 1D one. Our analytical results are confirmed by

computer simulations.
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