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Abstract
With a Bayesian approach, the linear optics correction

algorithm for storage rings is revisited. Starting from the
Bayes’ theorem, a complete linear optics model is simplified
as “likelihood functions” and “prior probability distribu-
tions”. Under some assumptions, the least square algorithm
and then the Jacobian matrix approach can be re-derived.
The coherence of the correction algorithm is ensured through
specifying a self-consistent regularization coefficient to pre-
vent overfitting. Optimal weights for different correction
objectives are obtained based on their measurement noise
level. A new technique has been developed to resolve de-
generated quadrupole errors when observed at a few select
BPMs. A necessary condition of being distinguishable is
that their optics response vectors seen at these specific BPMs
should be near-orthogonal.

INTRODUCTION
At modern particle accelerator facilities, advanced beam

diagnostics instruments with high acquisition rate can gen-
erate copious amounts of data within a short time period.
A specific example would be obtaining beam turn-by-turn
(TbT) data from beam position monitors (BPM) after the
beam is disturbed. With a Bayesian approach, the linear
optics correction algorithm for storage rings is revisited [1].
The linear optics functions, such as, the envelope function
β of betatron oscillation and its phase φ [2], can be ex-
tracted [3–5]. Due to various measurement noise, accurately
identifying quadrupole error sources is important for optics
correction. One can average over repetitive measurements,
then use the mean values directly. Distributions of measure-
ment noise, which are usually ignored, however, can provide
rich information for identifying error sources precisely. Us-
ing a Bayesian approach and the information provided by the
error analysis, the linear optics correction problem presented
by accelerators can be approached from the viewpoint of
probability.

Lattice measurement noise and quadrupole excitations
errors are usually randomly distributed around their expecta-
tion values. Overfitting quadrupole errors must be avoided.
Specifically, the optics functions β and φ can be measured
with BPMs at many locations si , where i = 0,1, · · · ,N − 1,
and N is the total number of BPMs. Given a set of measured
data with noise, fitting the actual quadrupole errors ∆K , is a
typical nonlinear regression problem since the dependence
of β and φ on K is nonlinear. In regression problems, over-
fitting is a modeling error which occurs when a function is
too closely fit to a limited set of data points [6, 7]. There
are two reasons of revisiting this problem with a Bayesian
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approach. First, the Bayesian approach is a proven technique
in preventing overfitting. Second, several optics distortions
caused by quadrupole errors need to be corrected simulta-
neously, but measured in different units and scales. With
the Bayesian approach, the coherence of the correction al-
gorithm, which is capable of dealing with multi-objective
regression problems, can be established.

In some scenarios, an optics distortion pattern is indeed
caused by a single quadrupole error rather than normally dis-
tributed errors. However, the goal of the Bayesian approach
is to distribute the error to multiple sources. It can some-
times fail to distinguish the single source from its highly
degenerated neighbors. A new technique has been devel-
oped where only a few specific BPMs are selected to address
the degeneracy. One necessary condition for being distin-
guishable is that the optics response vectors of those specific
BPMs should be near-orthogonal.

BAYESIAN APPROACH
From the viewpoint of probability, identifying quadrupole

errors from repetitive and independent measurements can be
achieved by computing a posterior conditional probability
distribution and determining its maxima. Consider a simple
case of β function in the horizontal plane. Based on the
Bayes’ theorem, the conditional probability of having an
error ∆K with a measured β reads as [6]

p(∆K |β) =
p(β |∆K )p(∆K )

p(β)
∝ p(β |∆K )p(∆K ). (1)

Eq. (1) can be interpreted as, given a measured optics
distortion β = β0 + ∆β, the probability of it being the error
source of ∆K is proportional to the product of a likelihood
function p(β |∆K ) and a probability distribution of error ∆K .
The likelihood function can be recognized as being related to
the dependence of β on K , i.e., the Jacobian matrix. p(∆K ) is
known as prior probability distribution which will be covered
in greater detail later. p(β) is the normalizing constant.

By maximizing the probability in Eq. (1), the most likely
quadrupole error distribution can be obtained. In general, we
can assume that both β measurement noise and quadrupole
excitation errors are normally distributed. For example, at a
particular BPM, repetitive measurement of βs are distributed
around an expectation value E(β) = β̄ with a variance σβ .

N(β | β̄, σ2
β) =

1
√

2πσβ
exp

[
−
(β − β̄)2

2σ2
β

]
. (2)

Eq. (1) thus can be re-written as

p(∆K |β) ∝ N(β | β̄(si,∆K ), σ2
β) · N(∆K |K0, σ

2
K ). (3)
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where σK is the variance of quadrupole error distribution.
Maximizing the probability of Eq. (3) is equivalent to mini-
mizing its negative logarithm,

− ln [p(∆K |β)] ∝
1

2σ2
β

∑
i

[
β(si,∆K ) − β̄(si)

]2
+

1
2σ2

K

∥∆K ∥2. (4)

Here ∥ • ∥ is the Euclidean norm of a vector. Eq. (4)
can be recognized as the least-square algorithm but with
some well-defined weights. It is important to note that, since
we assume a normal distribution for quadrupole errors, the
solution to Eq. (4) is intended to allocate errors according
to a normal distribution, even if they are not. If there is a
systematic calibration error on the quadrupole excitations,
the second distribution in Eq. (3) has an non-zero mean. But
after the first several iterations, the non-zero mean value
should be able to be filtered out. A more detailed discussion
on a single outlier of quadrupole error will be addressed the
next section.

Now we take a look at the first term on the right-hand
side of Eq. (4). By expanding β with respect to quadrupole
errors ∆K at β0 and keeping the linear components, it reads
as

1
2σ2

β

∑
i

[
β0(si) +

∂β(si)
∂K

∆K − β̄(si)
]2

=
1

2σ2
β

∑
i

[
∂β(si)
∂K

∆K − ∆β̄(si)
]2
, (5)

where ∆β̄(si) = β̄0(si) − β0(si). After differentiating every
term with respect to ∆K , it can be expressed in the format
of a matrix. The solution is given as

∆K =
[
MTM

]−1
MT
∆β̄. (6)[

MTM
]−1

MT is often known as the pseudo inverse of M ,
because M is usually non-invertible.

Thus far, the measurement noise σβ has been ignored.
The solution to Eq. (6) often overfits quadrupole errors from
either noisy BPM data, or even bad BPMs if they are present.
The overfitting can be mitigated by taking the second term
into account, which is known as regularization technique.
By adding an additional penalty term to the sum of squares
in Eq. (4), one can prevent the fitted quadrupole errors from
deviating from a reasonable normal distribution. In other
words, a complete linear optics model provides not only
a likelihood function but an informative prior probability
distribution of quadrupole errors as well. The solution to
the least-squares problem with regularization is

∆K =
[
MTM + λI

]−1
MT
∆β̄ (7)

It is important to note that the optimal regularization co-
efficient λ =

σ2
β

σ2
K

is well-defined here. More specifically,

the variance σk(∆β̄) of the quadrupole error distribution
p(∆K ) should be determined by the measured β-beat level
using the designed lattice model. Figure 1 illustrates that the
horizontal β-beat is linearly proportional to the variance of
quadrupole error distribution at the NSLS-II ring. After aver-
aging repetitive βx measurements and comparing against the
nominal βx,0, the variance of quadrupole error probability
distribution σk(∆β̄) can be determined with Fig. 1. During
an iterative correction, β-beat reduces gradually, as do the
corresponding quadrupole errors. Therefore the regulariza-
tion coefficient should be dynamically adjusted to speed up
the convergence as well. The p(∆K ) is named as the prior
probability because it can be estimated analytically [2] or
numerically in advance. In the previous section, one can
still use the regularization technique to avoid overfitting, but
the coefficient is not necessarily optimal due to lack of a
theoretical basis. Experimentally one can obtain this regular-
ization coefficient based on correction performance on a trial
basis [8]. However, the Bayesian approach can explicitly
give its statistic and physics interpretation.

Figure 1: Statistic illustration of the horizontal β-beat due to
the random quadrupole errors. This linear correlation with
gradually increasing variance are calculated with the NSLS-
II ring lattice model in advance. Once an averaged β-beat is
measured, its corresponding variance of quadrupole error
distribution can be used as the prior probability to prevent
overfitting

RESOLVING DEGENERACY
In the previous section, we discussed the case in which the

lattice distortion is due to normally distributed quadrupole er-
rors. Once a real error is localized in a particular quadrupole,
it may require us to identify which quadrupole is the root
cause. This is nontrivial because quadrupoles are closely
packed in modern storage rings, the NSLS-II being no excep-
tion. Therefore, their lattice response vectors (corresponding
columns in M) are often highly degenerated, especially be-
tween neighboring quadrupoles. The degeneracy between
the ith and j th quadrupole is defined by the correlation co-
efficient [8]

Ci, j =
mi · m j

∥mi ∥ ∥m j ∥
, (8)

where mi is the ith column of M , which has N elements. If
|Ci, j | approaches 1, it is difficult to distinguish which one is
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the actual error source with a full Jacobian matrix. It was
found that rather than using all BPMs, and instead selecting
a few specific BPMs among them, the highly degenerated
quadrupoles were distinguishable.

Consider that there are N BPMs. The β-beats seen
by these BPMs are N-dimension vectors. Among them,
n (n ≪ N) components can be selected to form two much
shorter sub-vectors vi, j in a such way that vi, j have much
less correlation between them. This means they should be
as near-orthogonal as possible in an n dimensional vector
space. There are N!/(n!(N − n)!) different permutations to
select from. We found that it is not difficult to distinguish
5-6 BPMs out of 180 BPMs in the NSLS-II ring even if the
correlation between some neighboring quadrupoles is above
0.98. Experimentally, we repetitively measure the lattice
functions. Then we compute the correlation coefficients be-
tween vi, j and the measured lattice distortion patterns, u, as
seen only at those 5-6 specific BPMs. If the quadrupole error
was due to the ith quadrupole, the correlation coefficients
Cvi ,u =

vi ·u
∥vi ∥ ∥u ∥

should be distributed close to ±1. Another
one, Cvj ,u =

v j ·u
∥v j ∥ ∥u ∥

should be around zero, and vice versa.

Figure 2: The unit βx responses vectors of quadrupole 10
and 11 seen at 6 selected BPMs. They are near-orthogonal
because their correlation is as low as 0.0612.

To verify this technique, an experiment and a simulation
study were carried out on the NSLS-II ring. The excitation
current of one quadrupole QL1G2C01A (with an index of 10)
was changed by 1 Ampere. The bunch-by-bunch feedback
system [9] was then used to resonantly drive the beam to
perform betatron oscillation at a nearly constant amplitude.
Beam TbT data was acquired for 800×1024 turns. For every
1024 turns of data, a set of βx functions was extracted at
180 BPMs. After averaging them, an error distribution was
fitted out with the Bayesian approach. It was found that the
maximum error is not QL1G2C01A as it should be, but its
neighbor QL2G2C01A (with an index 11)). It is not surprising
because the correlation between the 10th and 11th columns
of the Jacobian M is as high as 0.9896.

Among 180 BPMs, we specifically selected 6 of them
with their indices as {30, 31, 37, 62, 71, 78}. Observed
at these BPMs, the unit βx functions response to these two
quadrupoles is near-orthogonal with a correlation coeffi-
cient as low as 0.0612 (see Fig. 2). 800 independently mea-
sured βx-beat patterns at those specific 6 BPMs were com-
pared against these two unit response vectors v10,11. The

histograms of their correlation coefficients are illustrated
in Fig. 3. It becomes clear that the βx distortion is likely
due to the quadrupole QL1G2C01A rather than its neighbor
QL2G2C01A, because the measured optics distortion pattern
is highly correlated with its response vector.

Figure 3: The probability density distribution (PDD) of the
correlation coefficients between 800 measured βx distortion
and two unit vectors v10,11. The independently and repeat-
edly measured β-beats are highly correlated with quadrupole
10’s pattern, rather than its neighbor. Based on that we can
conclude that the actual error source is more likely from
the quadrupole 10 (QL1G2C01A) instead of quadrupole 11
(QL2G2C01A).
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