VLASOV-FOKKER-PLANCK SIMULATIONS OF PASSIVE HIGHER-HARMONIC CAVITY EFFECTS IN ALS-U*

G. Bassi[†], Brookhaven National Laboratory, Upton, USA

Abstract

We discuss numerical simulations of the Vlasov-Fokker-Planck equation to model passive higher-harmonic cavity (HHC) effects with parameters of the Advanced Light Source Upgrade (ALS-U). The numerical results, obtained with the SPACE code, are compared with a modal analysis of the coupled-bunch instability theory.

INTRODUCTION

The option to reutilize the existing Advanced Light Source (ALS) normal conducting higher-harmonic cavities (HHCs) for the ALS Upgrade (ALS-U) is discussed in [1]. Optimal and stable conditions for bunch lengthening are met with one cavity and $R_H = 1.35 \text{ M}\Omega$, however the power loss P = 12.6 kW exceeds the cavity limit (~5 kW). Reusing two of the ALS 3rd-harmonic cavities, whose shunt impedance is $R_H = 1.7 \text{ M}\Omega$, the power loss per cavity is P = 5.1 kW, within the cavity limit. However, the two ALS HHC system is shown to be unstable, with the longitudinal coupled-bunch mode $\mu = 1$ exhibiting a fast growth [1]. Besides considering a newly designed HHC system, in [1] it is suggested that the addition of the third ALS HHC in bunch-shortening mode might be a solution to stabilize the HHC system.

Table 1: ALS-U v20r Lattice Parameters

	Symbol	Value	Unit
Ring circumference	С	196.5	m
Revolution frequency	$\omega_0/2\pi$	1.526	MHz
Beam energy	E_0	2	GeV
Average current	I_0	500	mA
Momentum compaction	α	2.11	
Natural energy spread	σ_δ	0.943	
Energy loss per turn	U_0	0.217	MeV
Synchronous phase (no HHCs)	ϕ_1	158.784	deg
Harmonic number	h	328	
Main rf cavity frequency	$\omega_1/2\pi$	500.417	MHz
3 rd -harmonic frequency	$\omega_3/2\pi$	1501.251	MHz
Main cavity voltage	V_1	0.6	MV
Natural rms bunch length	σ_{z0}	3.54	mm
Synchrotron tune (no HHCs)	v_{s0}	1.75	
Synchrotron freq. (no HHCs)	$\omega_{s0}/2\pi$	2.68	kHz
Long. radiation damping	$ au_z$	14	ms

Table 2: HHC Design Options and Settings

Optimal HHC					
	Symbol	Value	Unit		
HHC shunt impedance	R_H	1.35	MΩ		
HHC quality factor	Q_H	20000			
HHC tuning angle	ψ	1.419/81.3	rad/deg		
HHC resonance frequency	$\omega_R/2\pi$	1501.496	MHz		
HHC tuning	$\Delta \omega_R/2\pi$	245	kHz		
HHC power loss	Р	12.6	kW		
Rms bunch length	σ_z	14.24	mm		
Two ALS HHCs					
	Symbol	Value	Unit		
HHC shunt impedance*	R_H	3.4	MΩ		
HHC quality factor	Q_H	21000			
HHC tuning angle	ψ	1.510/86.5	rad/deg		
HHC resonance frequency	$\omega_R/2\pi$	1501.835	MHz		
HHC detuning frequency	$\Delta \omega_R / 2\pi$	584	kHz		
HHC power loss*	Р	5.1	kW		
Rms bunch length	σ_z	14.7	mm		

* Total

Table 3: Main Cavity Parameters

	Symbol	Value	Unit
Main shunt impedance	R _M	5	MΩ
Main quality factor	Q_H	40000	MHz
Beta coupling	β_c	3	

COMPLEX FREQUENCY SHIFT

In [1] the growth-rate of the coupled-bunch mode $\mu = 1$ is calculated by linearizing the Vlasov equation about the exact numerical solution of the unperturbed particle motion at equilibrium, leading to a dispersion-relation equation, Eq. (22) of [1], which is then solved numerically.

In this paper we follow the mode analysis presented in [2]. Assuming the centroid z_m (here z_m should be understood as $\langle z_m \rangle$) of M = h bunches performing small rigid dipole oscillations, and making for the time evolution of the coupled-bunch mode \tilde{z}_u

$$\tilde{z}_{\mu}(t) = \sum_{m=0}^{M-1} z_m(t) e^{-\frac{i2\pi m\mu}{M}},$$
 (1)

$$z_m(t) = \frac{1}{M} \sum_{\mu=0}^{M-1} \tilde{z}_{\mu}(t) e^{\frac{i2\pi m\mu}{M}},$$
 (2)

the following ansatz

$$\tilde{z}_{\mu}(t) = a_{\mu}e^{-i(\omega_{s}+\Omega)t}, \Omega = \omega_{r} + i\omega_{i}, \ \omega_{i} = \tau^{-1}, \ (3)$$

s, and making mode \tilde{z}_{μ} $\tilde{z}_{\mu}(t) = \sum_{m=1}^{M-1} z_m(t) = \frac{1}{M}$ nsatz $e^{-i(\omega_s + \Omega)t}, \Omega =$

* Work supported by DOE under contract DE-SC0012704

† gbassi@bnl.gov

MC5: Beam Dynamics and EM Fields

MOPGW099

10th Int. Particle Accelerator Conf. ISBN: 978-3-95450-208-0

DOI

title

maintain attribution to the author(s).

must

of the work, publisher, and the complex frequency shift Ω for the coupled-bunch mode u = 1 satisfies

$$\Omega^{2} + 2\omega_{s}\Omega = i\frac{e\alpha I_{0}}{E_{0}T_{0}}\sum_{p=-\infty}^{+\infty}f_{p}\left|\tilde{\lambda}(f_{p})\right|^{2}Z_{0}^{||}(f_{p}), \quad (4)$$

where $f_p = (pM + 1)\omega_0$. In Eq. (4) ω_s is the *incoherent* synchrotron frequency modified by the beam loading voltage V_h induced by stationary symmetric bunches

$$\omega_s^2 = \omega_{s0}^2 - \frac{3e\alpha i_b R_H \omega_{rf} \cos \psi_H \sin \psi_H}{E_0 T_0}, \quad (5)$$

$$V_b(z) = i_b R_H \cos \psi_H \cos(3\omega_{rf} z/c + \psi_H), \qquad (6)$$

$$i_b = 2I_0 \tilde{\lambda}(\omega_R). \tag{7}$$

Eq. (4) can be solved for ω_r and ω_i in the two limit cases a) $\omega_i \ll \omega_r$ and b) $\omega_r \ll \omega_i$, corresponding to an instability with growh rate much smaller and bigger than the frequency shift respectively. It follows that the coherent complex frequency shift has the following two set of solutions terms of the CC BY 3.0 licence (© 2019). Any distribution of this work

a)
$$\omega_i \ll \omega_r$$

 $\omega_r^2 + 2\omega_s\omega_r = -\frac{e\alpha I_0}{E_0 T_0} \sum_{\substack{p=-\infty\\+\infty}}^{+\infty} f_p |\tilde{\lambda}(f_p)|^2 \operatorname{Im}Z_0^{||}(f_p),$
 $\omega_i = \frac{e\alpha I_0}{E_0 T_0(\omega_r + 2\omega_s)} \sum_{\substack{p=-\infty\\p=-\infty}}^{+\infty} f_p |\tilde{\lambda}(f_p)|^2 \operatorname{Re}Z_0^{||}(f_p).$ (8)

 $+\infty$

b) $\omega_r \ll \omega_i$

$$\omega_i^2 = \frac{e\alpha I_0}{E_0 T_0} \sum_{p=-\infty}^{+\infty} f_p \left| \tilde{\lambda}(f_p) \right|^2 \operatorname{Im} Z_0^{||}(f_p), \tag{9}$$
$$\omega_r + \omega_s = \frac{e\alpha I_0}{2E_0 T_0 \omega_i} \sum_{p=-\infty}^{+\infty} f_p \left| \tilde{\lambda}(f_p) \right|^2 \operatorname{Re} Z_0^{||}(f_p).$$

NUMERICAL SIMULATIONS OF THE VLASOV-FOKKER-PLANCK EQUATION

Numerical simulations of the Vlasov-Fokker-Planck system of equation are performed with the SPACE code [2]. For a numerical study of the performance and stability of the NSLS-II passive 3HC system see [3].

under The numerical results with parameters of the optimal HHC settings shown in Table 2 confirm the overall stability nsed of the HHC system. However, as already mentioned in the þe Introduction, the power loss of the HHC exceeds the cavity may limit of 5 kW.

In the following discussion we present numerical simuwork lations of the two ALS-U HHC system with parameters shown in Table 2, corresponding to a HHC detuning frequency $\Delta \omega_R/2\pi = 584$ kHz, giving, under stable condit-

Figure 1: numerical simulations of the two ALS-U HHCs with HHC detuning frequency $\Delta \omega_R / 2\pi = 584$ kHz; a) shows the longitudinal bunch distribution densities after 2000 turns, displaying the unstable coupled-bunch mode $\mu = 1$; (b) and (c) show the time evolution of the bunch centroid and bunch length respectively, for 5 different bunches across the bunch train; (d) shows the bunch centroid and bunch length of all bunch after 2000 turns, clearly displaying the unstable coupled-bunch mode $\mu = 1$. The time evolution of the modulus of the coupled-bunch mode $\mu = 1$ normalized to the natural bunch length σ_{z0} is shown in (e-g), in logarithmic scale. In Fig. 1(g) a linear fit to the numerical result gives the growth time $\tau_{num} =$ 0.139 ms, in good agreement with the analytical result $\tau_{an} = 0.131 \text{ ms}$ given by Eq. (9).

ions, a bunch lenghtening factor of ~4. The numerical results are discussed in Fig. 1. Figure 1(a) shows the longitudinal bunch distribution densities after 2000 turns, displaying an instability driven by coupled-bunch mode $\mu = 1$. Figures 1(b) and (c) show the time evolution of the bunch centroid and bunch length respectively, for 5 different bunches across the bunch train. Figure 1(d) shows the bunch centroid and bunch length of all bunch after 2000 turns, clearly displaying the unstable coupled-bunch mode $\mu = 1$.

• 8 358

the 1

Figure 2: Numerical simulation with HHC detuning frequency of 2000 kHz. (a) shows the longitudinal bunch distribution densities after 30000 turns, displaying the onset of the instability driven by the coupled-bunch mode $\mu = 1$; (b) and (c) show the time evolution of the bunch centroid and bunch length respectively, for 5 different bunches across the bunch train; (d) shows the bunch centroid and bunch length of all bunch after 30000 turns. The time evolution of the coupled-bunch mode $\mu = 0$ ormalized to the natural bunch length σ_{z0} is shown in (e), while (f) and (g) show the time evolution of the unstable coupled-bunch mode $\mu = 1$. In (g) an exponential fit to the numerical result to extract the numerical growth time gives $\tau_{num} = 2.3$ ms, in good agreement with the analytical result $\tau_{an} = 2.4$ ms given by Eq. (8).

The time evolution of the modulus of the coupled-bunch mode $\mu = 1$ normalized to the natural bunch length σ_{z0} is shown in Fig. 1(e-g) in logarithmic scale. In Fig. 1(g) a linear fit to the numerical result gives the growth time $\tau_{num} = 0.139$ ms, in good agreement with the analytical result $\tau_{an} = 0.131$ ms given by Eq. (9).

The case corresponding to a HHC detuning frequency $\Delta \omega_R / 2\pi = 2000$ kHz is discussed in Fig. 2, where the numerical calculation of the complex frequency shift shows that the condition of case (b), i.e. $\omega_i \ll \omega_r$, is satisfied. To better characterize the development of the instability, the equilibrium distribution has been forced by artificially decreasing the radiation damping time for the first 2000 turns to the value $\tau = 0.12$ ms. Figure 2(a) shows the longitudinal bunch distribution densities after 30000 turns, displaying the onset of the instability driven by the coupled-bunch mode $\mu = 1$. Figure 2(b) and (c) show the time evolution of the bunch centroid and bunch length respectively, for 5 different bunches across the bunch train. Figure 2(d) shows the bunch centroid and bunch length of all bunches after 30000 turns, clearly displaying the unstable coupled-bunch mode $\mu = 1$. The time evolution of the coupled-bunch mode $\mu = 0$ normalized to the natural bunch length σ_{z0} is shown in Fig. 2(e), while Fig. 2(f) and Fig. 2(g) show the time evolution of the unstable coupled-bunch mode $\mu = 1$. In Fig. 2(g) an exponential fit to the numerical result to extract the numerical growth time gives $\tau_{num} = 2.3$ ms, in good agreement with the analytical result $\tau_{an} = 2.4 \text{ ms}$ given by Eq. (8).

REFERENCES

- M. Venturini, "Passive higher-harmonic rf cavities with general settings and multibunch instabilities in electron storage rings", *Phys. Rev. Accel. Beams*, vol. 21, 114404, (2018).
- [2] G. Bassi *et al.*, "Self-consistent simulations and analysis of the coupled-bunch instability for arbitrary multibunch configurations", *Phys. Rev. Accel. Beams*, vol. 19, 024401, (2016).
- [3] G. Bassi and J. Tagger, "Longitudinal Beam Dynamics With a Higher-Harmonic Cavity for Bunch Lengthening", in *Proc.* 13th International Computational Accelerator Physics Conference (ICAP'18), Key West, Florida, USA, Oct. 2018, pp. 202-208. doi:10.18429/JACOW-ICAP2018-TUPAF12; and submitted to Int. J. Mod. Phys. A (IJMP