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Abstract 
We discuss numerical simulations of the Vlasov-Fokker-

Planck equation to model passive higher-harmonic cavity 
(HHC) effects with parameters of the Advanced Light 
Source Upgrade (ALS-U). The numerical results, obtained 
with the SPACE code, are compared with a modal analysis 
of the coupled-bunch instability theory.  

INTRODUCTION 
The option to reutilize the existing Advanced Light 

Source (ALS) normal conducting higher-harmonic cavities 
(HHCs) for the ALS Upgrade (ALS-U) is discussed in [1]. 
Optimal and stable conditions for bunch lengthening are 
met with one cavity and 𝑅   1.35 MΩ, however the 
power loss 𝑃  12.6 kW exceeds the cavity limit          
(~5 kW). Reusing two of the ALS 3rd-harmonic cavities, 
whose shunt impedance is 𝑅  1.7 MΩ, the power loss 
per cavity is 𝑃 5.1 kW, within the cavity limit. However, 
the two ALS HHC system is shown to be unstable, with the 
longitudinal coupled-bunch mode 𝜇 1 exhibiting a fast 
growth [1]. Besides considering a newly designed HHC 
system, in [1] it is suggested that the addition of the third 
ALS HHC in bunch-shortening mode might be a solution 
to stabilize the HHC system.  

Table 1: ALS-U v20r Lattice Parameters 

Symbol Value Unit 

Ring circumference 𝐶 196.5  m 

Revolution frequency 𝜔 /2𝜋 1.526  MHz 

Beam energy 𝐸  2 GeV 

Average current 𝐼  500  mA 

Momentum compaction 𝛼 2.11 

Natural energy spread 𝜎  0.943 

Energy loss per turn 𝑈  0.217 MeV 

Synchronous phase (no HHCs) 𝜙  158.784 deg 

Harmonic number ℎ 328 

Main rf cavity frequency 𝜔 /2𝜋 500.417 MHz 

3rd-harmonic frequency 𝜔 /2𝜋 1501.251 MHz 

Main cavity voltage 𝑉  0.6 MV 

Natural rms bunch length 𝜎  3.54 mm 

Synchrotron tune (no HHCs) 𝜐  1.75 

Synchrotron freq. (no HHCs) 𝜔 /2𝜋 2.68 kHz 

Long. radiation damping 𝜏  14 ms 

Table 2: HHC Design Options and Settings 

Optimal HHC 
Symbol Value Unit 

HHC shunt impedance 𝑅   1.35  M 
HHC quality factor 𝑄  20000 

HHC tuning angle 𝜓 1.419/81.3 rad/deg 

HHC resonance frequency 𝜔 /2𝜋 1501.496 MHz 

HHC tuning Δ𝜔 /2𝜋 245 kHz 

HHC power loss 𝑃 12.6 kW 

Rms bunch length 𝜎  14.24 mm 

Two ALS HHCs 
Symbol Value Unit 

HHC shunt impedance* 𝑅   3.4  M 
HHC quality factor 𝑄  21000 

HHC tuning angle 𝜓 1.510/86.5 rad/deg 

HHC resonance frequency 𝜔 /2𝜋 1501.835 MHz 

HHC detuning frequency Δ𝜔 /2𝜋 584 kHz 

HHC power loss* 𝑃 5.1 kW 

Rms bunch length 𝜎  14.7 mm 

* Total

Table 3: Main Cavity Parameters 

Symbol Value Unit 

Main shunt impedance 𝑅  5  M 
Main quality factor 𝑄  40000 MHz 

Beta coupling 𝛽  3 

COMPLEX FREQUENCY SHIFT 
In [1] the growth-rate of the coupled-bunch mode 𝜇 1 

is calculated by linearizing the Vlasov equation about the 
exact numerical solution of the unperturbed particle mo-
tion at equilibrium, leading to a dispersion-relation equa-
tion, Eq. (22) of [1], which is then solved numerically.  

In this paper we follow the mode analysis presented in  
[2]. Assuming the centroid 𝑧  (here 𝑧  should be unders-
tood as 〈𝑧 〉) of 𝑀 ℎ bunches performing small rigid di-
pole oscillations, and making for the time evolution of the 
coupled-bunch mode �̃�   

�̃� 𝑡 𝑧 𝑡 𝑒 ,        1  

𝑧 𝑡
1
𝑀

�̃� 𝑡 𝑒 ,         2  

the following ansatz 

    �̃� 𝑡 𝑎 𝑒 , Ω 𝜔 𝑖𝜔 ,   𝜔 𝜏 ,    3  
 ___________________________________________  
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the complex frequency shift Ω for the coupled-bunch mode 
𝜇 1 satisfies 

   Ω 2𝜔 Ω i
𝑒𝛼𝐼
𝐸 𝑇

𝑓 𝜆 𝑓 𝑍|| 𝑓 ,      4  

where 𝑓 𝑝𝑀 1 𝜔 .  In Eq. (4) 𝜔  is the incoherent 
synchrotron frequency modified by the beam loading volt-
age 𝑉  induced by stationary symmetric bunches  

   𝜔 𝜔
3𝑒𝛼𝑖 𝑅 𝜔 cos 𝜓 sin 𝜓

𝐸 𝑇
,       5  

  𝑉 𝑧 𝑖 𝑅 cos 𝜓 cos 3𝜔 𝑧/𝑐 𝜓 , 6  

   𝑖 2𝐼 𝜆 𝜔 .     7  

Eq. (4) can be solved for 𝜔  and 𝜔  in the two limit  cases  
a) 𝜔 ≪ 𝜔  and b) 𝜔 ≪ 𝜔 , corresponding to an instabi-
lity with growh rate much smaller and bigger than the fre-
quency shift respectively. It follows that the coherent com-
plex frequency shift has the following two set of solutions 

𝑎   𝜔 ≪ 𝜔     

𝜔 2𝜔 𝜔
𝑒𝛼𝐼
𝐸 𝑇

𝑓 𝜆 𝑓 Im𝑍|| 𝑓 ,

    𝜔
𝑒𝛼𝐼

𝐸 𝑇 𝜔 2𝜔
𝑓 𝜆 𝑓 Re𝑍|| 𝑓 .   8  

𝑏   𝜔 ≪ 𝜔   

   𝜔
𝑒𝛼𝐼
𝐸 𝑇

𝑓 𝜆 𝑓 Im𝑍|| 𝑓 ,  9  

    𝜔 𝜔
𝑒𝛼𝐼

2𝐸 𝑇 𝜔
𝑓 𝜆 𝑓 Re𝑍|| 𝑓 . 

NUMERICAL SIMULATIONS OF THE 
VLASOV-FOKKER-PLANCK EQUATION 

Numerical simulations of the Vlasov-Fokker-Planck 
system of equation are performed with the SPACE code 
[2].  For a numerical study of the performance and stability 
of the NSLS-II passive 3HC system see [3]. 

The numerical results with parameters of the optimal 
HHC settings shown in Table 2 confirm the overall stability 
of the HHC system. However, as already mentioned in the 
Introduction, the power loss of the HHC exceeds the cavity 
limit of 5 kW. 

In the following discussion we present numerical simu-
lations of the two ALS-U HHC system with parameters 
shown in Table 2, corresponding to a HHC detuning fre-
quency  Δ𝜔 /2𝜋 584 kHz, giving, under stable condit- 

Figure 1: numerical simulations of the two ALS-U HHCs 
with HHC detuning frequency Δ𝜔 /2𝜋 584 kHz; a) 
shows the longitudinal bunch distribution densities after 
2000 turns, displaying the unstable coupled-bunch mode 
𝜇 1; (b) and (c) show the time evolution of the bunch 
centroid and bunch length respectively, for 5 different 
bunches across the bunch train; (d) shows the bunch cen-
troid and bunch length of all bunch after 2000 turns, clearly 
displaying the unstable coupled-bunch mode 𝜇 1. The 
time evolution of the modulus of the coupled-bunch 
mode 𝜇 1 normalized to the natural bunch length 𝜎  is 
shown in (e-g), in logarithmic scale. In Fig. 1(g) a linear fit 
to the numerical result gives the growth time 𝜏
0.139 ms, in good agreement with the analytical result 
𝜏 0.131 ms given by Eq. (9). 

ions, a bunch lenghtening factor of ~4.  The numerical re-
sults are discussed in Fig. 1. Figure 1(a) shows the longitu-
dinal bunch distribution densities after 2000 turns, display-
ing an instability driven by coupled-bunch mode 𝜇 1. 
Figures 1(b) and (c) show the time evolution of the bunch 
centroid and bunch length respectively, for 5 different 
bunches across the bunch train. Figure 1(d) shows the 
bunch centroid and bunch length of all bunch after    
2000 turns, clearly displaying the unstable coupled-bunch 
mode 𝜇 1 .  
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Figure 2: Numerical simulation with HHC detuning fre-
quency of 2000 kHz. (a) shows the longitudinal bunch dis-
tribution densities after 30000 turns, displaying the onset 
of the instability driven by the coupled-bunch mode 𝜇 1; 
(b) and (c) show the time evolution of the bunch centroid 
and bunch length respectively, for 5 different bunches 
across the bunch train; (d) shows the bunch centroid and 
bunch length of all bunch after 30000 turns. The time evo-
lution of the coupled-bunch mode 𝜇  0 normalized to the 
natural bunch length 𝜎  is shown in (e), while (f) and (g) 
show the time evolution of the unstable coupled-bunch 
mode 𝜇  1. In (g) an exponential fit to the numerical re-
sult to extract the numerical growth time gives               
𝜏   2.3 ms, in good agreement with the analytical 
result 𝜏   2.4 ms given by Eq. (8). 

The time evolution of the modulus of the coupled-bunch 
mode 𝜇 1 normalized to the natural bunch length 𝜎  is 
shown in Fig. 1(e-g) in logarithmic scale. In Fig. 1(g) a lin-
ear fit to the numerical result gives the growth time 𝜏
0.139 ms, in good agreement with the analytical result 
𝜏 0.131 ms given by Eq. (9). 

The case corresponding to a HHC detuning frequency  
Δ𝜔 /2𝜋 2000 kHz is discussed in Fig. 2, where the nu-
merical calculation of the complex frequency shift shows 
that the condition of case (b), i.e.  𝜔 ≪ 𝜔 , is satisfied. To 
better characterize the development of the instability, the 
equilibrium distribution has been forced by artificially de-
creasing the radiation damping time for the first 2000 turns 
to the value 𝜏 0.12 ms. Figure 2(a) shows the longitudi-
nal bunch distribution densities after 30000 turns, display-
ing the onset of the instability driven by the coupled-bunch 
mode 𝜇 1. Figure 2(b) and (c) show the time evolution 
of the bunch centroid and bunch length respectively, for 5 
different bunches across the bunch train. Figure 2(d) shows 
the bunch centroid and bunch length of all bunches after 
30000 turns, clearly displaying the unstable coupled-bunch 
mode 𝜇 1. The time evolution of the coupled-bunch 
mode 𝜇 0 normalized to the natural bunch length 𝜎  is 
shown in Fig. 2(e), while Fig. 2(f) and Fig. 2(g) show the 
time evolution of the unstable coupled-bunch mode 𝜇 1. 
In Fig. 2(g) an exponential fit to the numerical result to ex-
tract the numerical growth time gives 𝜏 2.3 ms, in 
good agreement with the analytical result 𝜏 2.4 ms 
given by Eq. (8). 
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