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Abstract
The commissioning of diffraction-limited light sources

will be significantly affected by the fact that typical lattice
designs rely on very strong focussing elements in order to
achieve the small emittance goals. Especially in the early-
commissioning phase this can render procedures success-
fully used in the commissioning of existing third-generation
light sources ill-suited for the application to these new ma-
chines. In this contribution we discuss an iterative approach
to the early trajectory correction, based on the well-known
pseudo-inversion of a trajectory-response matrix. Measuring
this matrix during early commissioning can be cumbersome,
so that an algorithm working with the model response matrix
of the lattice is desirable. We discuss the stability of the iter-
ation in the presence of lattice errors, resulting in differences
between the actual and the model response matrix. Further,
Tikhonov regularization is investigated as a means to trade
off the RMS trajectory variation against the strength of the
required corrector kicks.

INTRODUCTION
Trajectory control based on the inversion of the so-called

response matrix (RM) is a standard tool, widely used in
the operation of particle accelerators. In this paper we will
investigate a problem which arises when the same approach
is to be applied to a machine that is not yet in nominal op-
eration but is just in the early stages of its commissioning.
In this uncorrected state the machine can not be expected
to provide full transmission, let alone a beam life time long
enough to allow for the time efficient measurement of the or-
bit response matrix. Any initial trajectory correction scheme
therefore has to employ an idealized response matrix, cal-
culated from the lattice model. Even if the lattice does not
contain non-linear magnetic elements, the beam trajectory
will still exhibit a non-linear behavior with respect to the
corrector kicks, as they are limited in the maximum kick they
can provide. As a result, the solution obtained by a naive
inversion of the response matrix might not be physically re-
alizable as it might involve corrector settings that exceed this
limit. Therefore, regularization of the inverse response ma-
trix is in order. Another type of non-linearity to consider is
driven by the finite physical aperture of the beam pipe. If the
beam gets lost due to insufficient trajectory correction it will
not reach BPMs further downstream, which then can not pro-
duce a meaningful reading. These non-linearities together
with noise and the inevitable differences between this model
response matrix and the actual behavior of the machine drive
the need for an iterative correction scheme. In the past, such
∗ amstutz@lbl.gov

schemes typically employed an empirically chosen subset
of corrector magnets and matrix regularization, both vary-
ing between correction steps [1, 2]. In contrast, we present
a less intricate correction scheme, based on the Tikhonov
regularized pseudo-inverse of the complete response matrix.

Iterative adjustment of corrector kicks based on a flawed
response matrix can, however, generally not be expected to
be stable. The stability of such an iteration is analysed in the
linear case, taking into account a generalized regularization
of the inverse response matrix.

FORMALISM
Let ®R : RC → RB be the response function relating the

settings ®φ of the C ∈ N>0 corrector magnets (CMs) to the
readings ®r of the B ∈ N>0 beam position monitors (BPMs):
®r = ®R( ®φ), ordered with respect to their longitudinal position
in the lattice. Time-dependent effects (such as noise or the
variation of experimental parameters other than the settings
of the corrector magnets) are not treated at this point. The
task is to find a feedback function ®Φ : RB → RC so that the
iteration

®φn+1 = ®φn − ®Φ(®rn) (1)

®rn = ®R( ®φn), (2)

or, equivalently, with ®T := Id − ®Φ ◦ ®R

®φn+1 = ®T( ®φn), (3)

converges to a corrector setting ®φ∗ which yields full trans-
mission through the machine, small variations in ®r∗, while
preferably using small corrector kicks.

Non-linearities from limitations on the maximum cor-
rector kicks ®φmax and the possibility of beam loss, can be
included by defining componentwise

®T( ®φn)| ®φmax
:=

{
®T( ®φn)i if | ®T( ®φn)i | ≤ ®φmax ,i
®φn,i else

(4)

and replacing ®R in ®T by

®R|®rmax (
®φn) :=

{
®R( ®φn)i if | ®R( ®φn)j | ≤ ®rmax, j ∀ j ≤ i
0 else

.

(5)
Equations (4) and (5) formalize the problem of threading a
beam through a beam pipe with limited physical aperture
using only a limited amount of corrector kicks, where beam
loss is modelled to occur if the trajectory exceeds a threshold
at one of the BPMs.
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Our approach is to choose a linear feedback function
®Φ(®r) = M+®r, where M+ is a regularized pseudo-inverse
of the response matrix M = ∂ ®R/∂ ®φ| ®φ=0. This matrix is
determined once and is then used throughout the whole cor-
rection process. In numerical commissioning studies of the
ALS-U storage- and accumulator ring [3] we observed that
this global correction scheme produces solutions requiring
weaker corrector kicks and converges significantly faster
than the previously implemented method, which basically
constituted a trial-and-error approach trying to find a suitable
regularization and subset of corrector magnets that would
improve the RMS BPM reading [2].

A feedback matrix can be found based on the singular-
value decomposition (SVD) of the response matrix

M = U ΣVT = U diagB,C(σi)VT (6)

where σi=1,...,min(B,C) ∈ R+ are the singular values of M
and U ∈ O(B), V ∈ O(C). From this a regularized pseudo-
inverse can be calculated via

M+ = V Σ+UT = V diagC ,B(σ
+
i )U

T (7)

with σ+
i=1,...,min(B,C)

∈ R+. For the purposes of this paper
we will use the term regularization to refer to the process of
constructing suitable σ+i from the singular values σi .

A well-known regularization approach is the truncated
singular value decomposition (TSVD) method. Here, the
regularized singular values are chosen to be σ+i = 1/σi if σi
is above an arbitrary threshold value and σ+i = 0 otherwise.
Conventionally, singular values are ordered by magnitude
σi ≥ σi+1, so that this scheme can be written as

σ+i (ν) =

{
1/σi i ≤ ν
0 i > ν

ν ∈ N>0. (8)

In our numerical studies, however, a different method
called Tikhonov regularization [4] has shown itself to result
in more a desirable behavior of the iteration, as described in
the last section. Here, the σ+i are constructed via

σ+i (α) = σi/
[
σ2
i + α

2] , (9)

where α ∈ R is a free regularization parameter.
The resulting regularized pseudo-inverse matrix M+α :=
V diagC ,B

(
σ+i (α)

)
UT can be shown to minimize the ex-

pression
| |M M+α®r − ®r | |22 + | |αM+α®r | |

2
2, (10)

for a given M , α, and ®r , so that the regularization parameter
α effectively provides a means to trade off the accuracy of
a correction step against the required change in the RMS
strength of the corrector magnets, ∆ ®φn = M+α®rn.

In the following the effect of a generalized regularization
on the fixed point of (3) is investigated in the linear case,
as well as the stability of the iteration in presence of lattice
errors.

FIXED POINT ANALYSIS
In the linear case described above, Equation (3) takes the

form
®φn+1 = T ®φn − ®κ, (11)

with T = 1 − M+M and ®κ = M+ ®R0. By induction it can be
seen that

®φn>0 = −


n−1∑
j=0

T j

 ®κ, (12)

where we have w.l.o.g. set ®φ0 = 0. Plugging in Equa-
tions (6) and (7), T can be written in diagonalized form
T = V diagC ,C(1 − σ+i σi)V

T , where we have exploited the
orthogonality of V to see 1 = V 1 VT = V diagC ,C(1)VT .
This diagonal form allows to write the sum in Equation (12)
in terms of geometric sequences in the diagonal elements

®φn>0 = −V diagC ,C
©«
n−1∑
j=0

[
1 − σ+i σi

] j
σ+i

ª®¬︸                      ︷︷                      ︸
1−[1−σ+i σi]

n

σi
, σi , 0

nσ+i , else

UT ®R0 (13)

where additionally ®κ has been restored. By taking the limit
n → ∞ the fixed point ®φ∗ of this iteration can, if it exists, be
found to be ®φ∗ = limn→∞

®φn>0 = −M
∗
®R0, with

M
∗
= V diagC ,C

©«


1/σi, σ+i σi ∈ (0,2)
0, σ+i = 0
∞, else

ª®®¬UT . (14)

Some interesting conclusions can be drawn from this result:
If the response matrix has vanishing singular values the iter-
ation will diverge linearly, unless the corresponding σ+i are
also chosen to be 0. If, however, any of theσi is non-zero and
the corresponding regularized singular value is ill-chosen so
that σ+i σi < (0,2) the system will exhibit exponential diver-
gence instead. Most importantly, we see that if the iteration
converges, its fixed point does not depend on the value of
the non-zero σ+i and M

∗
can be seen to be the well-known

Moore-Penrose pseudo-inverse [5] of M; completely inde-
pendent on the regularization scheme. In case σ+i σi ∈ (0,2)
holds for all singular values the iteration converges to the
actual inverse of the response matrix M

∗
= M−1. This last

result can also be obtained by assuming the boundedness T
and recognizing Equation (12) as a Neumann series.

LATTICE ERRORS
Due to time constraints in the early phases of commis-

sioning a precise measurement of the response matrix is not
feasible so that the initial trajectory correction will have to
work with an approximation M (calculated numerically from
the ideal lattice model) of the physically realized response
matrix M̂ = M + ϵ , meaning that the feedback matrix is
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Figure 1: Typical evolution of the root mean square (RMS)
(left) and maximum values (right) of the BPM readings ®r
and corrector strengths ®φ for two different Tikhonov regu-
larization parameters α and different response matrix error
magnitudes ϵ = M̂ − M. In the unregularized cases the
feedback matrix was scaled by a factor 0.1 , showing that
the beneficial effect of Tikhonov regularization can not be
reproduced by including a simple “gain factor”.

determined based on M, while the physical system reacts
according to M̂ . Substituting M → M̂ in T yields

T → T̂ = 1 − M+M − M+ϵ (15)
= T − M+ϵ . (16)

In general, T̂ is no longer diagonalizable so that in contrast
to the undisturbed case Equation (12) can not be evaluated
directly. However, a criterion for the convergence of

∑∞
j=0 T̂

j

can be deduced by invoking the Banach fixed point theorem
on Equation (11), showing that this iteration allows a unique
fixed point, if T̂ defines a contraction: | |T̂ | |op < 1, where
| | · | |op is an operator norm. By virtue of the subadditivity
and submultiplicativity of the operator norm, we see

| |T̂ | |op ≤ ||T | |op + | |M+ϵ | |op (17)
≤ ||T | |op + | |M+ | |op | |ϵ | |op. (18)

Choosing the l2 operator norm | | · | |op,2 = max ◦®σ this
becomes

| |T̂ | |op,2 ≤ max(|1 − σ+i σi |) +max(σ+i ) | |ϵ | |op,2, (19)

so that a sufficient condition for the convergence of
∑∞

j=0 T̂
j

is

1 − max(|1 − σ+i σi |)

max(σ+i )
> | |ϵ | |op,2. (20)

Choosing the σ+i based on the Tikhonov regularization
method σ+i = σi/(σ

2
i + α

2) it can be seen that max(σ+i ) ≤
1/(2α) and 1 − max(|1 − σ+i σi |) = σ

2
min/(σ

2
min + α

2), with
σmin := min(σi). With this, we see that Equation (20) is
fulfilled if

2ασ2
min

σ2
min + α

2
> | |ϵ | |op,2, (21)

which, for the case | |ϵ | |op,2 ≤ σmin, yields a range for the
free regularization parameter α which guarantees the con-
vergence of

∑∞
j=0 T̂

j

σ2
min − µ

| |ϵ | |op,2
< α <

σ2
min + µ

| |ϵ | |op,2
(22)

with µ = σmin

√
σ2

min − ||ϵ | |2op,2. We stress again that this
presents a sufficient condition for the stability, not a neces-
sary one.

ITERATION BEHAVIOR
The presented trajectory correction scheme has been

implemented in the Toolkit for Simulated Commissioning
(SC) [6] – an AT based toolbox allowing the realistic simu-
lation of commissioning procedures for storage-ring light
sources. During the numerical commissioning studies of the
storage- and accumulator ring of the Advanced Light Source
Upgrade (ALS-U) [7], it became apparent that employing
Tikhonov-regularized feedback matrices generally has a ben-
eficial effect on the correction iteration, as illustrated in
Figure 1. It shows the evolution of ®φn+1 = ®φn − M+(α)®rn
and ®rn = M̂ ®φn + ®κ where M+ is calculated from the ideal
response matrix of the ALS-U Accumulator Ring lattice [3]
M and M̂ is its disturbed counterpart as calculated by SC,
taking into account a set of realistic lattice errors. ®κ was
chosen at random. While the exact behavior of the iteration
naturally depends on the actual manifestation of ®κ and M̂,
the fundamental advantages of the regularized case over the
unregularized case indeed have proven to be characteristical:
During the first correction steps, before the iteration has
reached its fixed point, the regularized case reliably yields
smaller BPM readings, while using significantly smaller cor-
rector kicks, in terms of both the RMS and maximum value.
Further, Tikhonov regularization makes the correction pro-
cedure less sensitive to to lattice errors; after a few steps both
the RMS and maximum values are nearly identical, indepen-
dent on the magnitude of the response matrix errors. The
unregularized case shows increasingly large excursions with
increasing error magnitudes. As predicted by Equation (14)
the fixed point is not affected by the regularization.
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