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Abstract
Any description of the beam dynamics calculation and

simulation relies on the proper choice of a coordinate system
in order to minimize the computational complexity and to
apply different level of approximations in the calculations.
This need generates a large number of reference systems,
especially to describe the longitudinal dynamics of a par-
ticle beam like (z, z′), (t, ∆PP ), (z, ϕ), etc. In this paper we
summarize the rules to change coordinate systems, which
system is canonical and how the Hamiltonian of the beam
transforms according to the chosen coordinate system.

INTRODUCTION
The literature of accelerator physics simulation codes is

rich of different algorithms used to track charged particles
in different kind of reference frames. Just to give some
examples, we will describe here few common simulators.

MAD-X [1] uses x, px

p0
, y,

py

p0
,−c∆t, ∆E

cp0(1+ ∆pp0
)
, s, with

x, y, px, py canonical coordinates and momenta, p0 refer-
ence momentum, ∆t time difference of the particle with
respect to the reference particle, ∆p momentum difference
of the particle with respect to the reference particle and s,
as independent variable, as arc length along the reference
orbit.

TraceWin [2] uses x, dxds , y,
dy
ds , z,

∆p
ps
, s with ps the momen-

tum in the direction tangent to the trajectory of the reference
particle s.

IMPACT exists in two versions, depending on the co-
ordinate systems, IMPACT-Z [3] uses x, px, y, py, t, pt, z
where t is the time, and pt = −E the negative energy.
z is the longitudinal coordinate. IMPACT-T [4] uses
x
dz ,

px

mc ,
y
dz ,

py

mc ,
z
dz ,

pz
mc , t where dz = cdt and pi = γβi with

i = x, y, z.
PyORBIT [5] is agnostic about the coordinate system

(can work in different ways if specified) but the default is
the same coordinate system as TEAPOT [6] simulator, that
uses the coordinate system of the old version of MAD [7]
that is x, px

p0
, y,

py

p0
,−c∆t, ∆Ecp0

, s.

OpenXAL [8] uses x, dxds , y,
dy
ds , z,

1
γ2
∆p
p , s, like TraceWin

but scaled with a γ2 Lorentz factor in the longitudinal mo-
mentum.

From this list it seems that the choice of coordinate system
is arbitrary and there is a large freedom to select the frame
for simulation but what are the base criteria to chose one? In
the following sections we will try to give a general guideline
in the properties that a reference system has to fulfill, in
order to be suitable for a simulator in accelerator physics.

∗ emanuele.laface@esss.se

CANONICAL TRANSFORMATIONS
Regardless of the particle accelerator that we want to

simulate, we can start from an assumption that is always
valid: the physics of our simulator will be derived from the
Hamiltonian

H = c

√(
®p − e ®A

)2
+ m2c2 + eϕ (1)

where the potentials ®A and ϕ are such that the corresponding
fields are

®E = −®∇ϕ; ®B = ®∇ × ®A (2)

plus the usual gauge freedom; e is the electric charge; m
is the mass of the particle; c is the speed of light. Such
Hamiltonian is valid because it produces the Lorentz force1

that was extensively verified experimentally.
The equations of motion generated by the Eq. (1) are

generally difficult to solve and a common trick is to consider
the Taylor expansion of the Eq. (1) (the so-called paraxial
approximation). In order to be able to expand around zero,
the coordinates and momenta involved in the Hamiltonian
have to be small, this is the reason why every particle accel-
erator code express the dynamics with respect to a "reference
particle" that corresponds most of the time with the centroid
of the bunch.

The Hamiltonian is a function of coordinates qi and mo-
menta pi such that when evaluated on a particular time tra-
jectory, it satisfies the differential equations

Ûqi =
∂H
∂pi

; Ûpi = −
∂H
∂qi
. (3)

We expect that when we transform the qi or the pi we will
obtain a new Hamiltonian that will satisfy a new set of Eqs.
(3). This is assured by the canonical transformations, and
for a full discussion the best reference is [10]. Here we will
just explain the fundamentals.

Let us assume that a particle has coordinates q and mo-
menta p, and that the motion during a certain time t satis-
fies the equations of Hamilton (3) of a certain Hamiltonian
H = H(q, p, t). Now we want to find the new Hamiltonian
K = K(q̃, p̃, t̃) that satisfies the same set of equations in
the new coordinate system q̃ = q̃(q, p, t), p̃ = p̃(q, p, t), t̃ =
t̃(q, p, t).

t R R2n+1 R

t̃ R R2n+1 R

(q,p,t) H

φ

(q̃, p̃,t̃) K

id (4)

1 a proof that the classical version of this Hamiltonian generates the Lorentz
force is available in [9]. For the relativistic Hamiltonian the calculation
is the same but a bit longer.
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We evaluate dq̃
dt̃

as

dq̃
dt̃
=
∂q̃
∂q

dq
dt

dt
dt̃
+
∂q̃
∂p

dp
dt

dt
dt̃
+
∂q̃
dt

dt
dt̃

(5)

and the calculation is similar for dp̃
dt̃

and dt̃
dt̃

, so we have


dq̃
dt̃

dp̃
dt̃

dt̃
dt̃


=

dt
dt̃


∂q̃
∂q

∂q̃
∂p

∂q̃
∂t

∂p̃
∂q

∂p̃
∂p

∂p̃
∂t

∂t̃
∂q

∂t̃
∂p

∂t̃
∂t



dq
dt

dp
dt

1


. (6)

We also notice, from the diagram 4 that H(q, p, t) =
K(q̃(q, p, t), p̃(q, p, t), t̃(q, p, t)) so we have

∂H
∂q

∂H
∂p

1


=


∂q̃
∂q

∂p̃
∂q

∂t̃
∂q

∂q̃
∂p

∂p̃
∂p

∂t̃
∂p

∂q̃
∂t

∂p̃
∂t

∂t̃
∂t



∂K
∂q̃

∂K
∂p̃

∂K
∂t̃


. (7)

The matrix in the Eq. (7) is the transposal of the matrix in
the Eq. (6). If we call such a matrix J (as the Jacobian of the
coordinate transformation) and we call S the matrix of the
Hamilton equations extended with the additional row and
column corresponding to the independent variable

dq
dt

dp
dt

1


=


0 1 0

−1 0 0

0 0 1



∂H
∂q

∂H
∂p

1


= S


∂H
∂q

∂H
∂p

1


(8)

we finally have the condition that has to satisfy the transfor-
mation 

dq̃
dt̃

dp̃
dt̃

1


=

dt
dt̃

JSJT


∂K
∂q̃

∂K
∂p̃

1


= S


∂K
∂q̃

∂K
∂p̃

1


(9)

where the last equality is due to the new equations of Hamil-
ton in the new coordinate system. This condition is a gener-
alization of the usual symplectic condition for the case when
the time is also transformed. It is easy to see that if t̃ = t the
condition is exactly the symplectic.

The correct way to change the coordinates and preserve
all the properties of the initial Hamiltonian (that should be
the Eq. (1) because it generates the Lorentz force) is to apply
a change of coordinates between the old and the new, such
that the Jacobian of the transformation follows the rule of the
Eq. (9). We will see in the next section that a large family
of coordinate changes do not follow this rule.

INDEPENDENT VARIABLE
TRANSFORMATIONS

One of the most used coordinate change in particle accel-
erators swaps the time with position. The assumption is that
the particle beam moves mainly in the longitudinal direction,
so the position and time are related with a transformation

like
z = z0 + βct. (10)

It is easy to prove that it does not exist any suitable change of
coordinates that satisfies the Eq. (10) and the Eq. (9), so the
Eq. (10) is not a canonical transformation. Then we should
wonder if this transformation works and why. In order to
apply the proper change of coordinates between position and
time we have to go back to the action defined as [11]

A =
∫ t2

t1

L(q, Ûq, t)dt (11)

where Ûq = dq
dt and L is the Lagrangian, the function of

coordinates, velocities and time that maintains minimum (or
maximum) the action A along the trajectory between t1 and
t2.

The Hamiltonian is the Legendre transform of the La-
grangian defined as

p(q, Ûq, t) =
∂L
∂ Ûq

(12)

H = Ûqp − L (13)

where p is the conjugate momentum. Substituting this defi-
nition in the action we have

A =
∫ t2

t1

(
dq
dt

p − H
)

dt. (14)

At this stage, it is possible to replace the time with the posi-
tion applying the Eq. (10) with z = q having

A =
∫ q2

q1

(βcp − H)
dt
dq

dq =
∫ q2

q1

(
−H

dt
dq
+ p

)
dq (15)

where it was used the fact that dt
dq =

1
βc .

The Eq. (15) says that we can treat our problem with a
new set of assumptions and obtain the same action A. The
assumptions are

t̃ = q (16)
q̃ = t (17)
p̃ = −H (18)

H̃ = −p (19)

with the new equations of Hamilton expressed in the new
variables.

It is important to remark here that the swap of time with
position produces a new Hamiltonian (−p) and this is the
reason why it is not a canonical transformation. When a
simulator applies a transformation that is not canonical, it
is no longer using the Hamiltonian (1). This means that the
new Hamiltonian should be verified experimentally because
it may no longer produces the Lorentz force.

In the practical case of a time to position transformation
operated through a constant factor (as it is βc in our exam-
ple), we know from the measurements that everything works
correctly but this is limited to the βc constant. In reality, we
know that β can change in direction and value, especially
when the particles are accelerated. Many simulators con-
sider the acceleration in small steps or with the Transit Time
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Factor approximation (for the cavities) using the longitudinal
position, as it is exactly like time. This approach tends to
accumulate errors due to fact that the Eq. (15) is no longer
simple for a β that changes in time, and the approximation
of little steps could not work.

The most accurate way to simulate the dynamics of an
accelerating particles is to maintain the Hamiltonian in the
time domain not substituting time with space.

LONGITUDINAL VARIABLES
With the information about canonical transformation and

change of variables in the action, we are ready to analyze
the coordinate systems used in the particle dynamics codes.

The only code that uses a canonical transformation of the
Eq. (1) is IMPACT-T because it uses time as independent
variable. Such a simulator will then respect the Lorentz
force even in the case of changes in the reference velocity
(β0).

The other analyzed codes use the position s, as indepen-
dent variable, so they are applying the transformation (15),
plus a canonical transformation of the new Hamiltonian to
set a theoretical particle (the reference particle), as the center
of coordinates and momenta. The longitudinal component
of the generating function of type 2 used to do such a trans-
formation is [11]

F2 =

(
s0
β0

− ct
) (

1
β0
+ p̃

)
. (20)

The new conjugated variables for the longitudinal position
and momentum are [11]

−c∆t;
∆E
β0E0

(21)

with the zero index used for the reference particle. These
conjugated variables can be transformed considering the re-
lationship that exists between reference energy and reference
momentum E0 = c p0

β0

−c∆t;
∆E
cp0

(22)

that is the coordinate system used by the default of PyORBIT,
TEAPOT and the old version of MAD.

IMPACT-Z uses the same system but it sets to the unit
the reference energy and velocity. This can be done safely
because the action stays minimum even if the Lagrangian is
scaled by a constant factor, but every time there is a change
in the reference particle, this has to be included in a new
scaling factor in the model.

The code that uses ∆pp as longitudinal momentum are
applying a different canonical transformation with the gen-
erating function

F2 = (s0 − βct)
(p̃ + 1)
β
. (23)

The conjugated variables for this transformation are

−∆z;
∆p
p0

(24)

where −∆z is commonly called z as in TraceWin. OpenXAL
uses the same convention but it scales with a factor γ2. This
factor makes the longitudinal momentum equal to z′ that is
the angle of the tangential longitudinal vector with respect
to the reference trajectory. This choice can simplify the
calculations but at the price of evaluating all the equations
from the forces and not from the Hamilton equations.

The last reference system that was not mentioned yet is the
one of MAD-X that is similar to the one of TEAPOT but with
an additional

(
1 + ∆pp0

)
at the denominator. This is due to a

second order correction of the momentum expanded around
the curvilinear reference trajectory as described in [12]. This
coordinate system is non-canonical and requires a treatment
evaluating the equations of motion from the forces.

CONCLUSIONS
We reviewed what is a general approach to canonical

transformations and how to transform the Hamiltonian with
a new coordinate system preserving the action. Then, we
analyzed the longitudinal reference systems of the most com-
mon tracking code used in particle accelerators, evaluating
which transformation was adopted and when this is canoni-
cal.
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