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Abstract
A theoretical approach based on theory of thin vibrator an-

tenna describing the radiation produced by one-dimensional
relativistic bunch propagating through the sparce lattice of
PEC wires of inite length is presented. The validity of the
method is veriied by numerical simulations with COMSOL
Multiphysics. Possible applications of interaction between
charged particle bunches and artiicial wire structures are
discussed.

INTRODUCTION
Artiicial wire structures are attractive to researchers over

the past several decades. In the context of “left-handed”
metamaterials, “wire medium” was used for providing neg-
ative “efective” dielectric permittivity [1]. Later on, elec-
tromagnetic (EM) properties of “wire medium” was studied
in details [2, 3] under the assumption that considered wave-
lengths are much larger compared to the structure periods,
therefore allowing usage of “efective” macroscopic parame-
ters for it’s description. In this case, nondivergent properties
of Cherenkov radiation have been mentioned [4, 5].

For wavelengths comparable with the structure period,
the description based on “efective” parameters fails and
wire assembly should be considered as a “wire crystal”. Cor-
responding “crystals” can be used for development of ei-
cient radiation sources based on “volume free electron laser”
(VFEL) principle [6–8]. Moreover, waveguides loaded with
artiicial metamaterials (including “wire crystals”) are con-
sidered as promising candidates for high-power and high-
gradient accelerators [9, 10].

In this report, we present the analytical approach for in-
vestigation of EM ield produced by one-dimensional bunch
moving through the wire structure composed of inite length
PEC wires. This approach is free from limitations on ratio
betweeen wavelength and wire radus or structure period.
Moreover, COMSOL simulation and comparison between
results are performed.

PROBLEM FORMULATION
Figure 1 shows geometry of the problem. One-

dimensional Gaussian bunch

�(�, �, �, �) = ��(�)�(�)√2�� exp (−(� − ��)22�2 ) (1)
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Figure 1: Geometry of the structure: PEC wires of length2� and radius �0 form a rectangular lattice with periods ��,�� traversed by a Gaussian bunch (1).

traverses with constant velocity � = �� the periodic lattice
of PEC cylinders distributed in vacuum. Wires are located
in nodes of rectangular lattice with periods ��, �� excluding�-axis. Position of each cylinder’s axis ���, ��� is given by
pair of integers (�, �): ��� = ���, ��� = ���. Below, we
will use the following approximation: each wire is excited
by Coulomb ield of the moving bunch but does not get af-
fected by the ield produced by each neighboring wire. This
approximation is close to the “kinematic approach” of the
PXR theory in real crystals and allows consideration of each
wire excitation independently. The validity of this approach
is veriied by simulations in COMSOL (see Sec. ). The ap-
proach used below for calculation of each wire response is
related to Hallen’s method [11] which is generalized here
for the case of excitation by a charged particle bunch.

SINGLE WIRE EXCITATION
We will calculate the response of a single wire with “coor-

dinates” (�, �). The geometry of this sub-problem is shown
in Fig. 2. The problem is solved for amplitudes of Fourier
harmonics ⃗�� exp (−���). “Incident” ield for the case of
relativistic motion, � → 1 has the form :

�(�)�� ≈ ��� �′�2�� exp (������ − �2�2� ) , (2)

where ��� = √�2�� + (�′)2, �0 = ��0, �0 =√�2�−2(1 − �2), Re√ > 0, �� = √2��/�.
The problem here is to ind the surface current induced

at the surface of the wire. We will suppose that wires are
thin, i.e. �0 ≪ �, therefore wire langes can be neglected
and we can suppose that the surface current has only �-
component does not depending on �′. Therefore, surface
current ⃗������ can be presented as ⃗������ = ⃗�������� , ������ =�(�′)2��0 �(�′ − �0), where �(�′) is the total current of a wire
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Figure 2: Single wire excitation and local coordinate frames
(Cartesian and cylindrical) associated with the wire.

satisfying the boundary conditions at the ends of a wire,

�(�) = �(−�) = 0. (3)

Hallen’s integral equation for �(�′) is obtained as follows
(see [12] for details). Based on boundary condition on the
surface of PEC wire,

(�(�)��+���)∣�′=�0 = 0, (4)

we obtain for the “longitudinal” potential �(�) ≡2 ���(�′, �)∣�′=�0:

�2�(�)/ ��2 + �20�(�) = 2��0�(�)��, (5)

where �0 = �/�, ��� is �-component of vector potential
and Lorentz gauge condition is utilized. On the other hand,
the connection between �(�) and total current �(�) can be
calculated using Green’s theorem as follows:

�(�) = 2� ∫�−� ��′�(�′) exp (��0 ∣� − �′∣) �1(� − �′), (6)

�1(� − �′) = 12� ∫�−� ��′
√4�20 sin2 (�′/2) + (� − �′)2 . (7)

Ordinary diferential equation (5), integral equation (6) and
boundary condition (3) formulates the Hallen’s problem for
the surface current �(��)(�′) on a wire (�, �).

In the symplest approximation (“quasistationary” approx-
imation), a “local” term should be separated in (6) while the
remaining integral term being inversely proportional to the
large parameter of the problem Ω0 = Ω(0) ≈ 2 ln(2�/�0)
should be neglected (see [12] for details). Here

Ω(�) = ∫�−� ��′�1(� − �′). (8)

Finally we obtain:

�(��)(�′) = � exp (��0��� − �2/�2�)2�Ω(�′) { sin(�0�′)
sin(�0�) ×

× [2���(�) cos(�0�) − 2���(�) sin(�0�)] +
+2���(�′) sin(�0�′) − 2���(�′) cos(�0�′)⎫}⎬}⎭ ,

(9)

where

��(�)= ∫ sin(�0�′)�′�′2 + �2�� ��′, ��(�)= ∫ cos(�0�′)�′�′2 + �2�� ��′. (10)

Vector potential of such a current is:

�(��)�� (�, �, �)= �∫−� ��′ �(��)(�′)2�� �∫−� ��′ exp (��0���)��� , (11)

��� = √(�′��)2 + �20 − 2�0�′�� cos �′ + (� − �′)2, (12)

�′�� = √(� − ���)2 + (� − ���)2, and ield components can
be calculated.

One important peculiarity of this approximate solution is
the presence of the term sin(�0�) in the denominator of (9)
which equals zero for resonant frequencies:

� = ±2���, �� = �/(2�)�, � = 1, 2, … . (13)

For example, the irst resonant wavelength �1 = �/�1 = 2�
equals the total length of the wire. Taking into account
the inluence of radiation on surface current distribution
resolves singularity for ��, corresponding solution can be
found in [12].

NUMERICAL RESULTS
For simulations, we have used frequency domain solver

of COMSOL Multiphysics RF module. Corresponding sim-
ulated results can be directly compared with analytical ones.
Structure of the model can be found in [12]. Simulations
presented below are performed for � = 0 (point charge).
Man parameters of simulations are: � = 10GHz, � = 3cm,� = 1nC, �� = �� = 0.15�/�, � = 0.1� (“short wire”),2� = � (“resonant wire”), �/�0 = 200.

Figure 3 shows a comparison between COMSOL and
analytical results for the case of charge light near single
resonant wire. Real part of ��� component is shown on
a line parallel to �-axis. Real part of �(�)�� is proportional
to cos(��/�), background in Fig. 3 corresponds to a half-
cycle of this cosine function. An expressed peak for � = 0
corresponds to the response of a wire. As one can see, the
curves are in very good agreement.

Figure 4 shows EM ield for the case of a charge light
near a string of 4 “short” wires with coordinates (1, �),� = −3, −2, −1, 0. As one can see, magnitudes of spikes
are smaller compared to the resonant case and agreement
between curves is a bit worse. The sign of each spike has a
diferent sign compared to the case of “resonant wire”. How-
ever, one can conclude that each wire gives an independent
response. This fact proves the applicability of “kinematic
approach” for wire structures used throughout the paper.
It is worth noting that the presented approximate solution
gives surprisingly good results for a single wire of “resonant”
length. In the context of using wire structures for genera-
tion of EM radiation (in particular, in THz frequency range),
resonant case is of most interest since radiated EM ield is
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Figure 3: Real part of ��� component over � along the
line � = 0.5�� (top) and � = 1.5�� (bottom). A spike for� = 0 corresponds to the response of a wire. Wire has the
“resonant” length.

Figure 4: Real part of ��� component over � along the line� = 0.5�� (top) and � = 1.5�� (bottom) for the case of 4
“short” wires with coordinates (1, �), � = −3, −2, −1, 0.

can be used. To generate this frequency, the bunch should
be also short enough, � ≲ 100�m, which is accesible at
SLAC.
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In this case, carbon nanotubes having their radii of order of
nanometers and their lengths from tens of nm to several cm

expected to be much larger in this case compared to the non-
resonant wire. For potential THz source with � = 1THz the
resonant length of a wire is equal to wavelength � = 0.3mm.
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