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Abstract
We study electromagnetic field produced by a charged

particle bunch exiting an open-ended circular waveguide
with dielectric filling placed inside collinear vacuum waveg-
uide of a larger radius. Based on the developed theory, we
mainly investigate Cherenkov radiation (CR) generated pen-
etrated vacuum regions of the structure due to the diffraction
mechanism. We pay attention to the case of a train of short
bunches resulting in high-order CR modes excitation. We
also develop analytical procedure allowing performing the
limiting process to the case of infinite radius of the outer
waveguide.

INTRODUCTION
In recent years, an essential interest is observed in the

area of contemporary sources of Terahertz (THz) radiation
based on beam-driven waveguide structures loaded with di-
electric. Despite of the fact that both ordinary vacuum THz
devices are widely available and other mechanisms for THz
sources are discussed [1], beam-driven sources are extremely
attractive due to extraordinary THz radiation peak power [2].
In this report, we first present some results (based on cor-
responding rigorous solution) on generation of high-order
CR modes in the “embedded” structure with open-ended
dielectric-lined waveguide [3], as shown in Fig. 1, with the
focus on the diffraction penetration of CR into vacuum re-
gions of the structure. Second, we present current status of
developing the analytical procedure for limiting process to
the case of infinite radius of the outer waveguide (“opened”
structure).

“EMBEDDED” STRUCTURE
According to the idea of beam-driven THz source, THz

frequencies can be generated in mm- or sub-mm-sized
waveguides by charged particle bunches with proper charge
modulation, i.e. by bunch trains [4]. Figure 2 shows com-
parison of a typical single Gaussian bunch Fourier spectrum
with the spectrum of a bunch train of 15 identical bunches
with spacing 𝐿 > 2𝜎. Here parameters are chosen so that
the bunch train excites effectively the fifth CR mode. In
the same manner, other CR frequencies can be generated.
For example, Fig. 3 shows field distribution for the case
of sub-mm inner waveguide (similar structures were used
in [2]) with third CR mode (with frequency about 0.39 THz)
generated. Behaviour of 𝐸𝑟 component of CR in vacuum
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Figure 1: “Embedded” structure and notations, 𝑉 = 𝛽𝑐.
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Figure 2: Typical Fourier spectrum of a single Gaussian
bunch and that of a 15 bunches train with 𝐿 > 2𝜎 spacing,
black markers show CR frequencies.

regions of the structure (recall that CR is generated in the
inner waveguide and penetrates vacuum sections by means
of diffraction mechanism) is shown. Each thin (green) curve
shows the 𝐸𝑟 as a function of 𝑟 at a given time moment 𝑡
and given 𝑧. In total, each plot contains 151 curves covering
the 1.5 ns time range with 0.01 ns interval. The highlighted
solid (red) curve corresponds to the maximum field over the
cross-section. As one can see, maximum field in coaxial
region is always on the inner waveguide wall. In the wide
waveguide, global field maximum is typically at the first or
second local maximum.

The main purpose of Fig. 3 is to illustrate possibilities
of the developed rigorous approach for investigation of
field structure of high-frequency CR across the structure. It
should be underlined that simulation time consumed by CST
Particle Studio for similar structures but for the case of first
CR mode generation typically takes about 20 hours at PC
with Intel® Core i7 processor and 32 Gb memory. On the
contrary, our MATLAB code based on analytical formulas
shows approximately 20×60 times faster perfomance [3].
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Figure 3: CR field (𝐸𝑟 component) at the third CR mode
(≈ 386 GHz), in the coaxial area (a) and in wide vacuum
waveguide (b). Parameters: 𝑏 = 0.064 cm, 𝑎 = 0.25 cm,
𝜀 = 3.8, 𝑞 = 1 nC, 𝛽 = 0.9999, 𝜎 = 0.012 cm, 𝐿 = 6.45𝜎.

Moreover, the case of a bunch train is difficult to simulate
with CST PS. Therefore, the presented analytical approach
can be considered as preferable method for analysis of CR
field across the “embedded” structure.

“OPENED” STRUCTURE
We also deal with opened-ended dielectric-lined waveg-

uide (inner waveguide of radius 𝑏 in Fig. 1) in free space in
accordance with [5]. For simplicity, we consider excitation
by single 𝑙-th mode with coefficient 𝐵(𝑖),

𝐻(𝑖)
𝜔𝜙 = 𝐵(𝑖)𝐽1 (𝑟𝑗0𝑙

𝑏 ) 𝑒−𝜅(1)
𝑧𝑙 𝑧,

propagating from inside the inner waveguide. Reflected field
in area (1) is presented over standart series over waveguide
modes:

𝐻(1)
𝜔𝜙 =

∞
∑
𝑚=1

𝐵𝑚𝐽1(𝑟𝑗0𝑚/𝑏)𝑒𝜅(1)
𝑧𝑚𝑧, (1)

where 𝜅(1)
𝑧𝑚 = √𝑗2

0𝑚𝑏−2 − 𝜀𝑘2
0 , Re𝜅(1)

𝑧𝑚 > 0, 𝐽0(𝑗0𝑚) = 0,
{𝐵𝑚} are unknown coefficients. Scattered field in “opened”
vacuum areas:

𝐻(2)
𝜔𝜙=

∞
∫
0

𝐶(𝜉′) exp(Γ𝑧)𝑍(𝑟, 𝜉′)𝜉′𝑑𝜉′, (2)

for 𝑧 < 0, 𝑏 < 𝑟 < ∞and

𝐻(3)
𝜔𝜙 =

∞
∫
0

𝐴(𝜉) exp(−𝛾𝑧)𝐽1(𝑟𝜉)𝜉𝑑𝜉, (3)

for 𝑧 > 0, 0 < 𝑟 < ∞, where 𝐴(𝜉), 𝐶(𝜉′) are un-
known functions, 𝛾(𝜉) = √𝜉2 − 𝑘2

0 , Γ(𝜉′) = √𝜉′2 − 𝑘2
0 ,

Re(Γ, 𝛾) > 0,

𝑍(𝑟, 𝜉′) = 𝐽1(𝑟𝜉′) − 𝐽0(𝑏𝜉′)
𝑁0(𝑏𝜉′)𝑁1(𝑟𝜉′).

We perform matching of tangential field components for
𝑧 = 0, integrate these relations,

∫
∞

0
⋅ 𝐽1 (𝑟𝑗0𝑝/𝑏) 𝑟𝑑𝑟 for 0 < 𝑟 < 𝑏,

∫
∞

𝑏
⋅ 𝑍(𝑟, 𝜉)𝑟𝑑𝑟 for 𝑏 < 𝑟 < ∞,

and utilize tabular formulas for Bessel functions including
the following:

∫
∞

0
𝐽1(𝑟𝜉′)𝐽1(𝑟𝜉)𝑟𝑑𝑟 = 𝛿(𝜉 − 𝜉′)/𝜉,

∫
∞

𝑏
𝑁1(𝑟𝜉)𝑁1(𝑟𝜉′)𝑟𝑑𝑟 = 𝛿(𝜉 − 𝜉′)/𝜉+

+ V.p.
𝑏 [𝜉𝑁0(𝑏𝜉)𝑁1(𝑏𝜉′) − 𝜉′𝑁1(𝑏𝜉)𝑁0(𝑏𝜉′)]

𝛾2(𝜉) − Γ2(𝜉′)
,

∫
𝑃𝜉

𝑑𝜉′𝑊(𝜉′) ∫
∞

0
𝑑𝑟𝑟𝐽1(𝑟𝜉)𝑁1(𝑟𝜉′) =

= 2𝜉
𝜋 V.p. ∫

∞

0
𝑑𝜉′ 𝑊(𝜉′)/𝜉′

Γ2(𝜉′2)−𝛾2(𝜉)
,

∫
𝑃𝜉′

𝑑𝜉𝑊(𝜉) ∫
∞

0
𝑑𝑟𝑟𝐽1(𝑟𝜉)𝑁1(𝑟𝜉′) =

= 2
𝜋𝜉′ V.p. ∫

∞

0
𝑑𝜉 𝑊(𝜉)𝜉

Γ2(𝜉′2)−𝛾2(𝜉)
,

where 𝑊(𝜉) is arbitrary function, contour 𝑃𝜉 coincides with
positive 𝜉′-semiaxis excluding the point 𝜉′ = 𝜉 which is
bypassed by small semicircle or above either below (and
similarly for 𝑃𝜉′). After a series of transformations, we
obtain the following systems (𝑝 = 1, 2, …):

∞
∫
0

𝑑𝜉
𝜉 ̃𝐴(𝜉) [𝜅(1)

𝑧𝑝
𝜀 − 𝛾(𝜉)]

(𝛾(1)
𝑧𝑝 )

2
− 𝛾2(𝜉)

=
2𝜅(1)

𝑧𝑝 �̃�𝑝
𝜀 , (4)

∞
∫
0

𝑑𝜉
𝜉 ̃𝐴(𝜉) [𝜅(1)

𝑧𝑝
𝜀 + 𝛾(𝜉)]

(𝛾(2)
𝑧𝑝 )

2
− 𝛾2(𝜉)

=
𝜅(1)

𝑧𝑙 𝐵(𝑖)𝑏𝐽1(𝑗0𝑝)
𝜀 𝛿𝑝𝑙, (5)

2
𝜋𝜉𝑁0(𝑏𝜉)V.p.

∞
∫
0

𝜉′ ̃𝐴(𝜉′)𝑑𝜉′

Γ(𝜉′) − 𝛾(𝜉) + 2𝛾(𝜉)𝐴(𝜉) = 0, (6)

−2
𝜋𝜉𝑁0(𝑏𝜉)V.p.

∞
∫
0

𝜉′ ̃𝐴(𝜉′)𝑑𝜉′

Γ(𝜉′) + 𝛾(𝜉) =

= 2𝛾(𝜉)𝐶(𝜉) (1 + 𝐽2
0(𝑏𝜉)𝑁−2

0 (𝑏𝜉)) ,
(7)

where �̃�𝑝 = 𝑏𝐵𝑝(𝜉)𝐽1(𝑗0𝑝)/2, ̃𝐴(𝜉) = 𝜉𝐴(𝜉)𝐽0(𝑏𝜉).
To solve these systems simultaneously, one should con-

struct the “resolvent” function 𝑓 (𝑤). To do this, it is con-
venient to start from corresponing “embedded” structure
(Fig. 1), to construct corresponding “resolvent” function

̄𝑓 (𝑤) and to perform limiting procedure 𝑎 → ∞. For the
“embedded” structure we have the following systems [6]:
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∞
∑
𝑚=1

̃𝐴𝑚 [𝜅(1)
𝑧𝑝
𝜀 − 𝛾(3)

𝑧𝑚]

(𝛾(1)
𝑧𝑝 )

2
− (𝛾(3)

𝑧𝑚)
2 =

2𝜅(1)
𝑧𝑝 �̃�𝑝
𝜀 , (8)

∞
∑
𝑚=1

̃𝐴𝑚 [𝜅(1)
𝑧𝑝
𝜀 − 𝛾(3)

𝑧𝑚]

(𝛾(1)
𝑧𝑝 )

2
− (𝛾(3)

𝑧𝑚)
2 =

𝜅(1)
𝑧𝑝 𝐵(𝑖)𝑏𝐽1(𝑗0𝑝)

𝜀 𝛿𝑝𝑙, (9)

∞
∑
𝑚=1

̃𝐴𝑚

𝛾(3)
𝑧𝑚 − 𝛾(2)

𝑧𝑛
= 0, (10)

∞
∑
𝑚=1

̃𝐴𝑚

𝛾(3)
𝑧𝑚 + 𝛾(2)

𝑧𝑛
= −2𝛾(2)

𝑧𝑛 ̃𝐶𝑛, (11)

where 𝑛 = 0, 1, …, { ̃𝐶𝑚} and { ̃𝐴𝑚} are modal expansion
coefficient in areas (2) and (3), correspondingly, 𝛾(2)

𝑧0 =

−𝑖𝑘0, 𝛾(2)
𝑧𝑚 = √𝜒2

𝑚 − 𝑘2
0 , Re𝛾(2)

𝑧𝑚 > 0, 𝛾(3)
𝑧𝑚 = √𝑗2

0𝑚𝑎−2 − 𝑘2
0 ,

Re𝛾(3)
𝑧𝑚 > 0, 𝐽0(𝑏𝜒𝑚)𝑁0(𝑎𝜒𝑚) − 𝐽0(𝑎𝜒𝑚)𝑁0(𝑏𝜒𝑚) = 0.

The solution of these systems can be obtained using mod-
ified residue calculus technique [5, 6] by constructing the
“resolvent” function ̄𝑓 (𝑤):

̄𝑓 (𝑤) =
2𝐵(𝑖)𝑏𝐽1(𝑗0𝑙)𝛾(1)

𝑧𝑙 𝜅(1)
𝑧𝑙

(𝜅(1)
𝑧𝑙 + 𝜀𝛾(1)

𝑧𝑙 ) [ ̄𝑔 (𝛾(1)
𝑧𝑙 ) + 𝑅𝑙 ̄𝑔 (−𝛾(1)

𝑧𝑙 )]
̄𝑔(𝑤),

̄𝑔(𝑤)=
𝑤−𝛾(1)

𝑧𝑙
1− 𝑤

Γ(1)
𝑙

∞
∏
𝑛=1

[1 − 𝑤
𝛾(2)

𝑧𝑛
] 𝑒

𝑤𝑑
𝜋𝑛

∞
∏
𝑠=1

[1 − 𝑤
Γ(1)

𝑠
] 𝑒

𝑤𝑏
𝜋𝑠

∞
∏

𝑚=1
[1 − 𝑤

𝛾(3)
𝑧𝑚

] 𝑒
𝑤𝑎
𝜋𝑚 𝑒

𝑤
𝜋 [𝑏ln( 𝑏

𝑑 )+𝑎ln( 𝑑
𝑎 )]

,

where 𝑑 = 𝑎 − 𝑏,

𝑅𝑚 = [𝜀𝛾(1)
𝑧𝑚 − 𝜅(1)

𝑧𝑚] [𝜀𝛾(1)
𝑧𝑚 + 𝜅(1)

𝑧𝑚]
−1

.

For example, using this “resolvent” function one can easily
obtain modal coefficients in the area (3), ̃𝐴𝑚 = Res𝛾(3)

𝑧𝑚
̄𝑓 (𝑤).

Other coefficients are expressed by ever simpler formulas.
The first step of the limiting procedure is to present ̄𝑓 (𝑤)

in specific form. To illustarte this, we put 𝜀 = 1 and get:

̄𝑓0(𝑤) = 𝐵(𝑖)𝑏𝐽1(𝑗0𝑙)𝛾(1)
𝑧𝑙 ̄𝑔0(𝑤),

̄𝑔0(𝑤) = ̃𝑔0(𝑤)𝐺(𝑤) [ ̃𝑔0 (𝛾(1)
𝑧𝑙 ) 𝐺 (𝛾(1)

𝑧𝑙 )]
−1

,

̄𝑔0(𝑤)=
𝑤−𝛾(2)

𝑧0
1− 𝑤

𝛾(1)
𝑧𝑙

∞
∏
𝑛=1

[1 − 𝑤
𝛾(2)

𝑧𝑛
] 𝑒

𝑤𝑑
𝜋𝑛

∞
∏
𝑠=1

[1 − 𝑤
𝛾(1)

𝑧𝑠
] 𝑒

𝑤𝑏
𝜋𝑠

∞
∏

𝑚=1
[1 − 𝑤

𝛾(3)
𝑧𝑚

] 𝑒
𝑤𝑎
𝜋𝑚

,

𝐺(𝑤) = exp [−𝑤
𝜋 (𝑏 ln (𝑏

𝑑) +𝑎 ln (𝑑
𝑎))].

We introduce the functions

�̄�0(𝑤) =
∞
∏
𝑠=1

1 − 𝑤/𝛾(3)
𝑧𝑠

1 − 𝑤/𝛾(2)
𝑧𝑠

exp ( 𝑤
𝛾(3)

𝑧𝑠
− 𝑤

𝛾(2)
𝑧𝑠

) and (12)

�̄�0(𝑤) = 𝑤
𝜋 [𝑏 ln (𝑏

𝑑) + 𝑎 ln (𝑑
𝑎)] +

+ 𝑤
∞
∑
𝑛=1

( 𝑏
𝜋𝑛 − 1

𝛾(3)
𝑧𝑛

+ 1
𝛾(2)

𝑧𝑛
) ,

(13)

and obtain

̄𝑔0(𝑤)=
�̄�0 (𝛾(1)

𝑧𝑙 )
�̄�0(𝑤)

exp [−�̄�0(𝑤) + �̄�0 (𝛾(1)
𝑧𝑙 )].

Presented functions allow convenient limiting process to
the case 𝑎 → ∞. To do this, one should present (12) and
(13) as integrals over certain closed contours in the com-
plex plane, as shown in [5]. For example, after a series
of manipulations, we get the following representation for
𝑅0(𝑤) = lim𝑎→∞ �̄�0(𝑤) which corresponds to the vacuum
case of “opened” structure:

𝑅0(𝑤)= exp

⎧{{{
⎨{{{⎩

2
𝜋2

∞
∫
0

[ln (1 − 𝑤
√𝜂2−𝑘2

0

) + 𝑤
√𝜂2−𝑘2

0

] 𝑑𝜂

𝜂 [𝐽2
0(𝑏𝜂) + 𝑁2

0 (𝑏𝜂)]

⎫}}}
⎬}}}⎭

.

In a similar way we can obtain the limiting value 𝜒0 and
solve “opened” problem for vacuum case. The next step is
using a similar analysis of the more complicated function

̄𝑓 (𝑤). We hope to perform this task in the near future.
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MC5: Beam Dynamics and EM Fields
D03 Calculations of EM Fields - Theory and Code Developments


