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Abstract 
This work is motivated by the weak-strong beam-beam 

effect as occurs in colliding charged-particle beams. We 
consider beams with elliptical cross section and power law 
binomial forms for the density distribution. We demon-
strate explicitly how to construct analytically the space-
charge potential inside the “strong” beam. This is essential 
to the program of calculating beam-beam effects for non-
gaussian beams. 

INTRODUCTION 
The calculation of the electrostatic force on a test particle 

within a charge distribution of circular or elliptical cross 
section has a long history, starting with James Clerk Max-
well [1], as does the uniform ellipsoid (3D). These methods 
were reported by Klein [2] and Kellog [3], and later gener-
alized by Houssais [4]. Some of the simpler cases have 
been used (Kapchinski & Vladimirski [5], and Sacherer 
[6]) in accelerator physics since the 1960s. Keil [7], Mon-
tague [8], Zotter [9], Bassetti & Erskine [10] all started 
with the 2D Housais potential for a Gaussian. Neverthe-
less, except for the uniform and Gaussian [4] elliptic beam, 
the method is not widely known. 

Here we show explicitly how the technique is employed 
for power law binomial beams, and how our results relate 
to the gaussian beam through the second moments. 

Relation to Beam-Beam Effects 
Assuming that the beam has a Gaussian charge distribu-

tion, Houssais and later Bassetti & Erskine, took the trans-
verse density to be Exp[-R2/2] where R2 = [(x/sx)2 
+(y/sy)2]. Here x,y are Cartesian coordinates and sx,sy are 
the standard deviation of the distribution.  

Particle beams are not necessarily Gaussian. We take 
density in the quadratic form [1-(R/b)2]N. With radius b and 
power index N suitably chosen, this can approximate the 
Gaussian increasingly well, even for relatively small N. 
Moreover, when we calculate the corresponding potential, 
for R>4 σ or larger, it differs very little from the Gaussian 
case; because the residual charge beyond radius R is of or-
der Exp[-R2/2] <<< 1 leaving only the Log[R] term, which 
is common to both potentials. Assuming the 2-dimensional 
Green's function, we show how to construct the potential 
leading to explicit and finite series in x and y. Finally, we 
illustrate for the case N=6, b=4σ and write the low order 
terms in x and y for sigma-x not equal sigma-y.  

Normalization & Equal Variance 
The 2D and 3D Gaussian distributions are the product of 

1D distributions of the form:  

𝐸𝑥𝑝[−(1/2)(𝑥/𝑠)^2 ]/(√2𝜋 𝑠) 
where s is the standard deviation or r.m.s value of x (i.e. s2 
is variance). 

Consider now the hard-edge elliptical distributions  𝜌 = [1 − 𝑍(0)] 𝐼⁄  
where integer N is the power law, and  𝑍[𝑡] = 𝑥sx + 𝑡 + 𝑦sy + 𝑡 

The normalization integral is 𝐼 = 𝜋sx sy (1 + 𝑁)⁄  
The hard edge distribution will have the same variance 

as the Gaussian, if the semi-axes of the ellipse sx, sy are 
chosen according to the form < 𝑥 > = 𝑠 = sx4 + 2𝑁 

POTENTIAL FUNCTION 
Inside the particle beam, the potential, V, is the solution 

of Poisson’s equation −𝛻 𝑉 = 𝜌 . From the treatises of 
Kellog and Houssais, it follows that V is of the form: 𝑉[𝑍] = 𝐼4𝜋 (1 − 𝑍[𝑡])𝜌[𝑍[𝑡]]𝑆[𝑡] 𝑑𝑡 

where 𝑆[𝑡] = (sx + 𝑡)(sy + 𝑡) . Here t is a dummy 
variable; it is not a time coordinate. The integral is loga-
rithmically divergent at Z=0, that is when x=y=0. The po-
tential is defined up to an arbitrary constant. Hence we sub-
tract V[Z=0] to eliminate the singularity. Thus: 𝑉[𝑍] = 𝐼4𝜋 −1 + (1 − 𝑍[𝑡])𝜌[𝑍[𝑡]]𝑆[𝑡] 𝑑𝑡 

𝑉[𝑍] = 14𝜋 −1 + (1 − 𝑍[𝑡])𝑆[𝑡] 𝑑𝑡 

Three-Dimensional Case 
The 3D case is a simple extension of the formulas above: 𝑍[𝑡] = 𝑥sx + 𝑡 + 𝑦sy + 𝑡 + 𝑧sz + 𝑡 𝑆[𝑡] = (sx + 𝑡)(sy + 𝑡)(sz + 𝑡) 

with revisions of the normalization constant IN and vari-
ance formula. Technically, it is not necessary to subtract off 
V[Z=0] because the integral is not divergent at x=y=z=0. 
However, it is “handy” to have the potential function equal 
zero at the origin. 

Except in the cases N=0 (constant density) and N=∞ 
(Gaussian), the 3D integral cannot be obtained analytically, 
and numerical integration of elliptic integrals must be re-
sorted to; so, we shall say no more about the 3D ellipsoidal 
charge distribution. 

2D CONSTANT DENSITY, N=0 
The uniformly filled ellipse with boundary (1-Z[0])=0. 

The integral over t is performed giving the expression: 

 ___________________________________________  
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𝑉[𝑥, 𝑦] = − sy𝑥 + sx𝑦2𝜋 sx sy (sx + sy) 

Forming the gradient, E = - Grad V, gives the field com-
ponents:  {Ex, Ey} = 1𝜋(sx + sy) 𝑥sx , 𝑦sy  

The field rises linearly from the origin, as is well known. 
Forming the Laplacian, we recover the normalized charge 
density 𝜌[𝑥, 𝑦] = 1/𝜋sxsy. 

2D QUADRATIC DENSITY, N=1 
Setting index N=1 gives the parabolic density profile: 

𝜌[𝑥, 𝑦] = 2 1 − 𝑥sx − 𝑦sy𝜋 sx sy  

The integral V[Z[t]] over t is performed giving the ex-
pression: 4𝜋𝑉[𝑥, 𝑦] = 4𝑥 𝑦sxsy(sx + sy) − 4(sy𝑥 + sx𝑦 )sxsy(sx + sy)

+ 2((2sx + sy)𝑥sx + (sx + 2sy)𝑦sy )3(sx + sy)  

Forming the gradient, gives the field component Ex = 2𝑥𝜋sx(sx + sy) 1 − (2sx + sy)𝑥3sx (sx + sy) − 𝑦sy(sx + sy)  

and a similar expression for component Ey with x and y, 
and sx and sy, interchanged. Fig. 1 shows the deviation 
from the linear rise of Ex in the x,y plane when sx = 2sy. 
Forming the Laplacian recovers the charge density.  

 
Figure 1: Electric field slope Ex(x,y)/x for N=1. 

AUTOMATION 
Performing these calculations by hand is tedious and er-

ror prone. Therefore, an automation strategy is needed. We 
re-derive the results of the previous section to illustrate a 
simple strategy for the analytic integration. 

For N=1, the function to be integrated is (1-Z)2/S. Let Z 
= (ax + ay) and expand the binomial form (1-Z)2 -1.  

Arrange the powers of ax,ay in an array: 0 −2ay ay−2ax 2ax ay 0ax 0 0  

Now make the substitutions  ax → 𝑥^2 (sx^2 + 𝑡)⁄ , ay → 𝑦^2 (sy^2 + 𝑡)⁄  

divide by S[t], and perform the integrations element by el-
ement. The sum of all the elements in the array is the de-
sired potential: 

⎝⎜
⎜⎜⎛

0 − 4𝑦sxsy + sy 2(sx + 2sy)𝑦3sy (sx + sy)− 4𝑥sx + sxsy 4𝑥 𝑦sxsy(sx + sy) 02(2sx + sy)𝑥3sx (sx + sy) 0 0 ⎠⎟
⎟⎟⎞ 

2D QUARTIC DENSITY, N=2 
The procedure just described is now applied to the quar-

tic density distribution 

𝜌[𝑥, 𝑦] = 3 1 − 𝑥sx − 𝑦sy𝜋 sx sy  

Expanding the binomial [1- (ax+ay)]3 gives the coeffi-
cient array: 

⎝⎛
0 −3ay 3ay −ay−3ax 6axay −3axay 03ax −3ax ay 0 0−ax 0 0 0 ⎠⎞ 

Substituting for ax,ay, dividing by S[t] and integrating 
over t gives: 

 
The sum of the array elements is the potential 4πV[x,y]. 

Forming the gradient, gives the field component Ex as the 
product of linear and quartic parts: 3𝑥𝜋𝜎 𝜎 + 𝜎 × 

{1 + 𝑦 (𝜎 + 3𝜎 )3𝜎 (𝜎 + 𝜎 ) − 2𝑦 (−3𝑥 𝜎 + 3𝜎 − 𝑥 𝜎 + 3𝜎 𝜎 )3𝜎 𝜎 (𝜎 + 𝜎 )− 𝑥 (−8𝑥 𝜎 + 20𝜎 − 9𝑥 𝜎 𝜎 + 30𝜎 𝜎 − 3𝑥 𝜎 + 10𝜎 𝜎 )15𝜎 (𝜎 + 𝜎 ) } 

And, likewise, for Ey. Fig. 2 shows the deviation from 
the linear rise of Ex in the x,y plane when sx = 2sy. 

 
Figure 2: Electric field slope Ex(x,y)/x for N=2. 
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2D DENSITY, N=6 

𝜌[𝑥, 𝑦] = 7(1 − 𝑥𝜎 − 𝑦𝜎 )𝜋𝜎 𝜎  

We apply the procedure. The leading terms are always 
linear; in this case: {Ex → 7𝑥𝜋𝜎 𝜎 + 𝜎 , Ey → 7𝑦𝜋𝜎 (𝜎 + 𝜎 )} 

The expressions for the field are too lengthy to report. 
Instead we plot Ex/x and Ey/y in the x,y plane in Fig. 3 and 
Fig. 4, respectively. 

 
Figure 3: Electric field slope Ex(x,y)/x for N=6. 

 
Figure 4: Electric field slope Ey(x,y)/y for N=6. 

2D DENSITY, N=10 
Already for N=6, the particle beam begins to develop a 

core and tails, like a gaussian distribution; and likewise for 
the electric field. This effect becomes more pronounced for 
increasing N; for example N=10, see Fig. 5 and Fig. 6. 

 
Figure 5: Electric field slope Ex(x,y)/x for N=10. 

 
Figure 6: Electric field slope Ey(x,y)/y for N=10. 
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CONCLUSION 
We have developed a strategy for analytic calculation of 

the space-charge potential of elliptic cylinder hard-edge 
power-law binomial (charged particle) beams, normalized 
to constant r.m.s size. And we have presented a few exam-
ples.  We have also given an historical narrative for this 
type of calculation. 
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