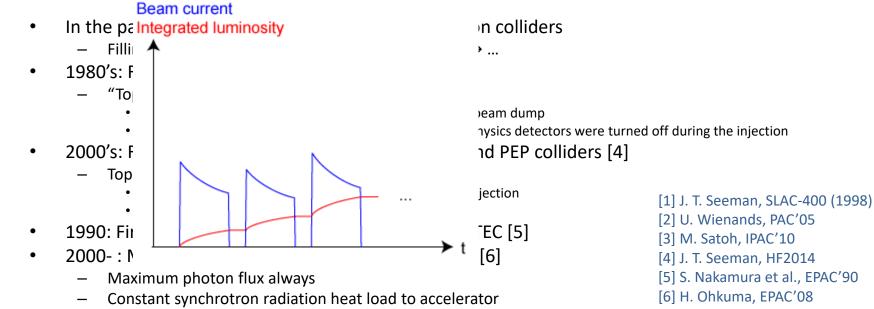


Review of top-up injection schemes for electron storage rings

Masamitsu Aiba, PSI 02.05.2018 IPAC'18, Vancouver, Canada

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

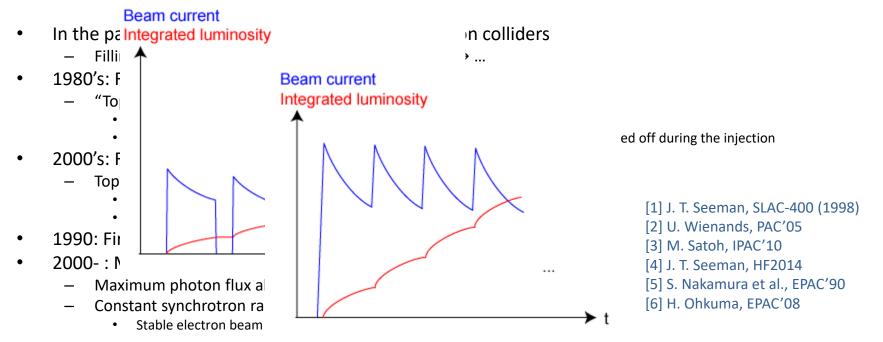
• Brief history of top-up injection


- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

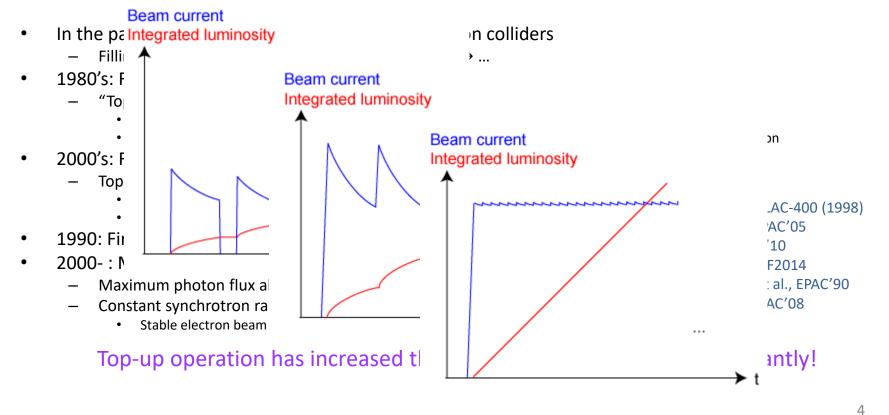
Brief history of top-up injection

- In the past, lepton colliders were operated as proton colliders
 - − Filling \rightarrow (Acceleration) \rightarrow Collision \rightarrow Beam dump \rightarrow ...
- 1980's: First top-up injections in colliders [1]
 - "Top-up-and-coast" [2]
 - Top-up injection when the beam current decrease, no beam dump
 - Turn-around time was significantly shortened though physics detectors were turned off during the injection
- 2000's: Further developments mainly in KEKB [3] and PEP colliders [4]
 - Top-up operation
 - Almost constant beam currents with frequent top-up injection
 - Physics detectors turned on always
- 1990: First top-up injection in the light source SORTEC [5]
- 2000- : Most light sources employ top-up injection [6]
 - Maximum photon flux always
 - Constant synchrotron radiation heat load to accelerator
 - Stable electron beam \rightarrow Stable photon beam

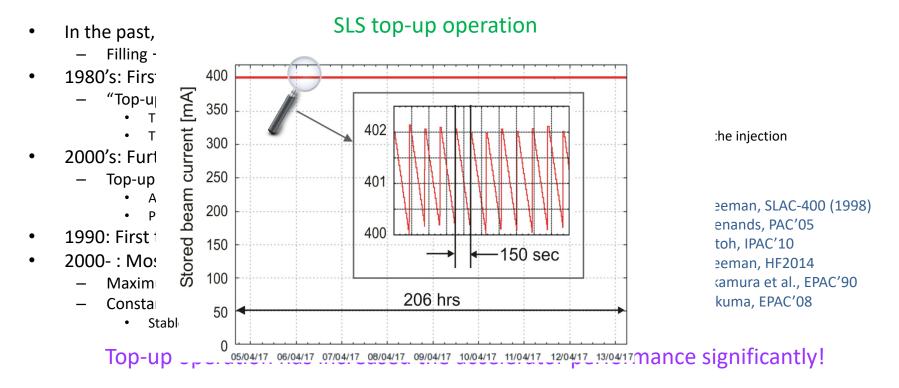
- J. T. Seeman, SLAC-400 (1998)
 U. Wienands, PAC'05
 M. Satoh, IPAC'10
 J. T. Seeman, HF2014
 S. Nakamura et al., EPAC'90
 H. Ohkuma, EPAC'08
- Top-up operation has increased the accelerator performance significantly!



• Stable electron beam \rightarrow Stable photon beam


Top-up operation has increased the accelerator performance significantly!

Top-up operation has increased the accelerator performance significantly!



Brief history of top-up injection

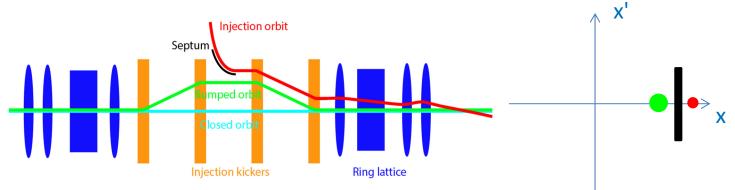
- In the past, lepton colliders were operated as proton colliders
 - − Filling \rightarrow (Acceleration) \rightarrow Collision \rightarrow Beam dump \rightarrow ...
- 1980's: First top-up injections in colliders [1]
 - "Top-up-and-coast" [2]
 - Top-up injection when the beam current decrease, no beam dump
 - Turn-around time was significantly shortened though physics detectors were turned off during the injection
- 2000's: Further developments mainly in KEKB [3] and PEP colliders [4]
 - Top-up operation
 - Almost constant beam currents with frequent top-up injection
 - Physics detectors turned on always
- 1990: First top-up injection in the light source SORTEC [5]
- 2000- : Most light sources employ top-up injection [6]
 - Maximum photon flux always
 - Constant synchrotron radiation heat load to accelerator
 - Stable electron beam \rightarrow Stable photon beam

- J. T. Seeman, SLAC-400 (1998)
 U. Wienands, PAC'05
 M. Satoh, IPAC'10
 J. T. Seeman, HF2014
 S. Nakamura et al., EPAC'90
 H. Ohkuma, EPAC'08
- Top-up operation has increased the accelerator performance significantly!

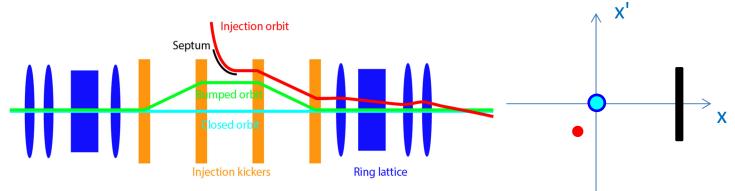
Brief history of top-up injection

- In the past, lepton colliders were operated as proton colliders
 - − Filling \rightarrow (Acceleration) \rightarrow Collision \rightarrow Beam dump \rightarrow ...
- 1980's: First top-up injections in colliders [1]
 - "Top-up-and-coast" [2]
 - Top-up injection when the beam current decrease, no beam dump
 - Turn-around time was significantly shortened though physics detectors were turned off during the injection
- 2000's: Further developments mainly in KEKB [3] and PEP colliders [4]
 - Top-up operation
 - Almost constant beam currents with frequent top-up injection
 - Physics detectors turned on always
- 1990: First top-up injection in the light source SORTEC [5]
- 2000- : Most light sources employ top-up injection [6]
 - Maximum photon flux always
 - Constant synchrotron radiation heat load to accelerator
 - Stable electron beam \rightarrow Stable photon beam

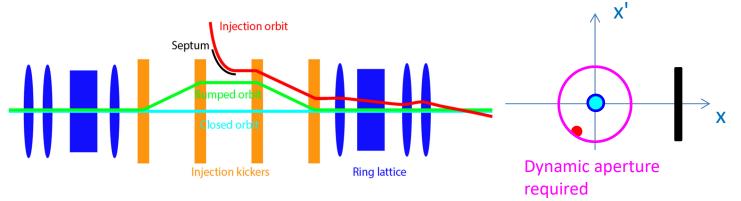
- J. T. Seeman, SLAC-400 (1998)
 U. Wienands, PAC'05
 M. Satoh, IPAC'10
 J. T. Seeman, HF2014
 S. Nakamura et al., EPAC'90
 H. Ohkuma, EPAC'08
- Top-up operation has increased the accelerator performance significantly!



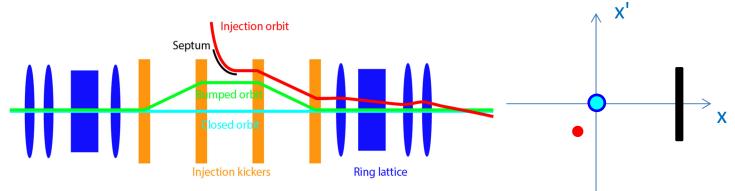
- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References



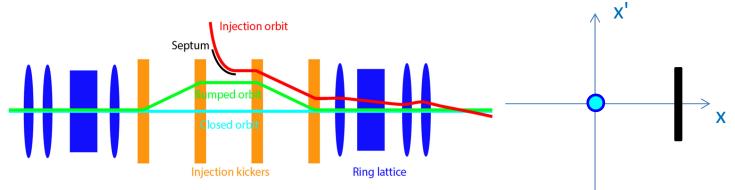
- Conventional injection scheme
 - Used for the first realizations of top-up operation mode
 - Still used widely in lepton colliders and light sources
- Layout and beams in phase space
 - Septum + Kicker bump (a series of kickers)
 - Injection beam separated from the stored beam at the time of injection



- Conventional injection scheme
 - Used for the first realizations of top-up operation mode
 - Still used widely in lepton colliders and light sources
- Layout and beams in phase space
 - Septum + Kicker bump (a series of kickers)
 - Injection beam separated from the stored beam at the time of injection



- Conventional injection scheme
 - Used for the first realizations of top-up operation mode
 - Still used widely in lepton colliders and light sources
- Layout and beams in phase space
 - Septum + Kicker bump (a series of kickers)
 - Injection beam separated from the stored beam at the time of injection



- Conventional injection scheme
 - Used for the first realizations of top-up operation mode
 - Still used widely in lepton colliders and light sources
- Layout and beams in phase space
 - Septum + Kicker bump (a series of kickers)
 - Injection beam separated from the stored beam at the time of injection

- Conventional injection scheme
 - Used for the first realizations of top-up operation mode
 - Still used widely in lepton colliders and light sources
- Layout and beams in phase space
 - Septum + Kicker bump (a series of kickers)
 - Injection beam separated from the stored beam at the time of injection

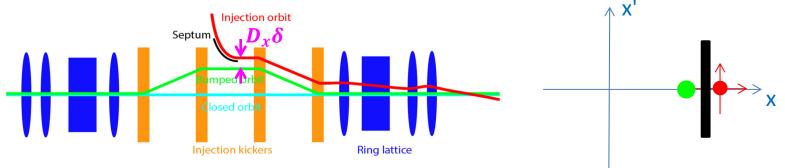
Contents

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

Demand in the future accelerator

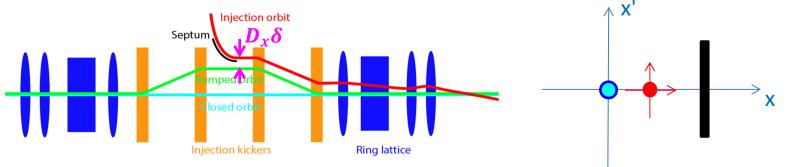
- Limitation and side effect in Conventional injection
 - Dynamic aperture to accept the injection beam is essential
 - The orbit bump, in practice, may not be fully closed, and then the stored beam is disturbed
- Future machine aiming at *high performance*
 - In general, the higher performance, the smaller dynamic aperture will be
 - Light source based on multi-bend achromat
 - Collider with very small β^*
- New injection schemes aiming at
 - Less dynamic aperture required
 - Ultimately, no disturbance to the stored beam
 - 100% injection efficiency is preferable if not essential

- Strong sextupoles
 - for chromaticty correction


Contents

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

- Modified conventional injection scheme
 - Developed at the LEP [7, 8]
- Layout and beam in phase space
 - Septum + Kicker bump, as in the conventional injection
 - Ring optics includes a finite dispersion function at the septum
 - Off-energy injection beam is placed onto the corresponding off-energy orbit → Synchrotron oscillation instead of betatron oscillation

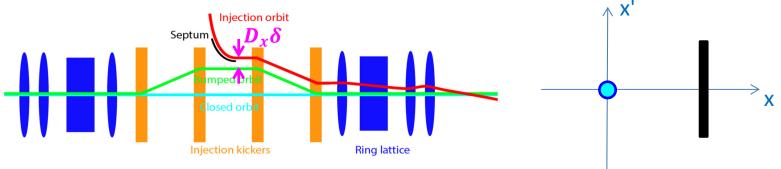


[7] S. Myers, LEP Note 334, 1981

[8] P. Collier, PAC'95

Synchrotron phase space injection (1)

- Modified conventional injection scheme
 - Developed at the LEP [7, 8]
- Layout and beam in phase space
 - Septum + Kicker bump, as in the conventional injection
 - Ring optics includes a finite dispersion function at the septum
 - Off-energy injection beam is placed onto the corresponding off-energy orbit → Synchrotron oscillation instead of betatron oscillation



[7] S. Myers, LEP Note 334, 1981

[8] P. Collier, PAC'95

Synchrotron phase space injection (1)

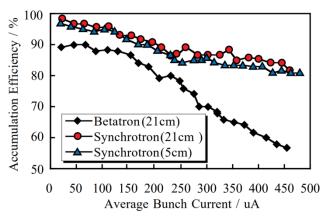
- Modified conventional injection scheme
 - Developed at the LEP [7, 8]
- Layout and beam in phase space
 - Septum + Kicker bump, as in the conventional injection
 - Ring optics includes a finite dispersion function at the septum
 - Off-energy injection beam is placed onto the corresponding off-energy orbit → Synchrotron oscillation instead of betatron oscillation

[7] S. Myers, LEP Note 334, 1981

[8] P. Collier, PAC'95

Synchrotron phase space injection (2)

- Synchrotron phase space injection at LEP
 - Higher injection efficiency than the conventional injection scheme
 - With physics optics ($\beta^*=5 \text{ cm}$), accumulation was possible only with synchrotron phase space injection
 - The higher injection efficiency resulted in a mitigation of adverse radiation dose to the detector.
 Noted that dispersion is zero at IP.



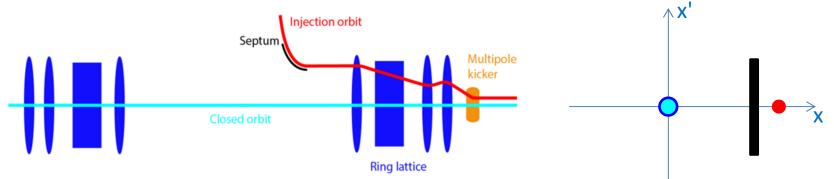
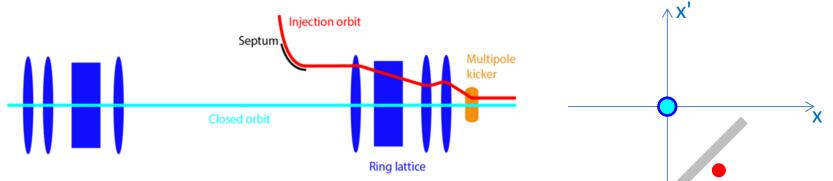

Figure 6: Accumulation Efficiency vs. Accumulated Bunch Current for Betatron and Synchrotron Injection. Note the Suppressed Zero Scale.

Figure from [8]

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

[9] K. Harada, Y. Kobayashi, T. Miyajima, andS. Nagahashi, PR ST-AB (2007).[10] H. Takaki et al., PR ST-AB (2010).[11] A. Hernandez et al., LER'14

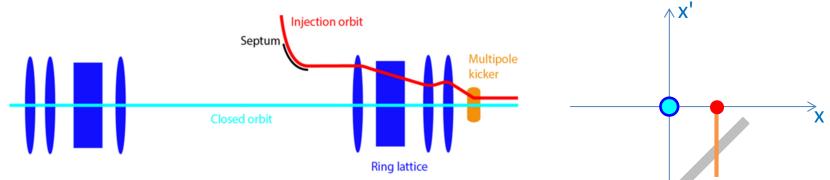


IPAC₁₈

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

[9] K. Harada, Y. Kobayashi, T. Miyajima, andS. Nagahashi, PR ST-AB (2007).[10] H. Takaki et al., PR ST-AB (2010).[11] A. Hernandez et al., LER'14

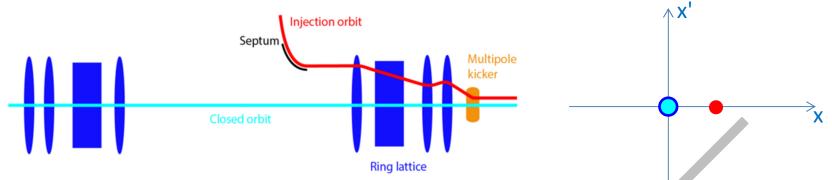


IPAC₁₈

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

[9] K. Harada, Y. Kobayashi, T. Miyajima, andS. Nagahashi, PR ST-AB (2007).[10] H. Takaki et al., PR ST-AB (2010).[11] A. Hernandez et al., LER'14

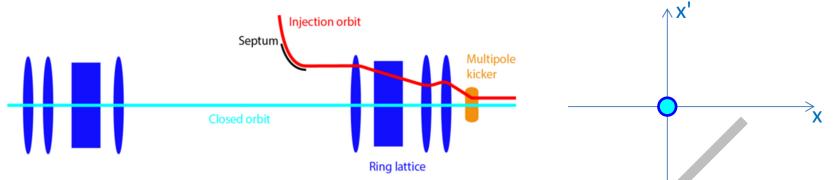

IPAC₁₈

PAUL SCHERRER INSTITUT

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

[9] K. Harada, Y. Kobayashi, T. Miyajima, andS. Nagahashi, PR ST-AB (2007).[10] H. Takaki et al., PR ST-AB (2010).[11] A. Hernandez et al., LER'14

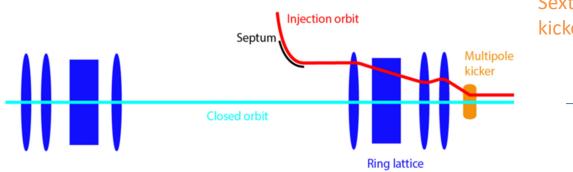


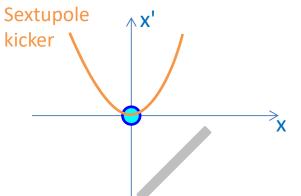
IPAC₁₈

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

[9] K. Harada, Y. Kobayashi, T. Miyajima, andS. Nagahashi, PR ST-AB (2007).[10] H. Takaki et al., PR ST-AB (2010).[11] A. Hernandez et al., LER'14


IPAC₁₈


PAUL SCHERRER INSTITUT

Multipole kicker injection (1)

- Multipole kicker injection
 - Developed at KEK photon factory [9, 10]
 - Injection with off-energy injection beam is also possible, similarly to Synchrotron phase space inj. [11]
- Layout and beams in phase space
 - Septum + Multipole kicker
 - The centroid of stored beam is not disturbed

IPAC₁₈

Multipole kicker injection (2)

- Multipole kicker injection (MKI) at KEK PF [12] R. Takai et al., DIPAC'11
 - Using pulse sextupole magnet
 - Used for the user operation at KEK PF since 2011 [12]

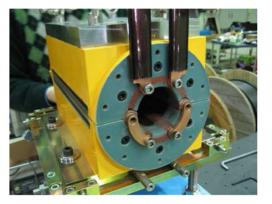


FIG. 13. (Color) Front view of the PSM. The glass epoxy board (green) and the epoxy resin (brown) are used for insulation.

Figures from [10]

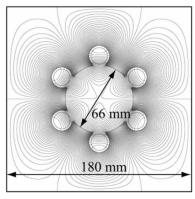


FIG. 12. Cross-sectional view and two-dimensional magnetic field distribution of the PSM. The bore diameter is 66 mm. The coil is a one-turn copper bar with a diameter of 15 mm.

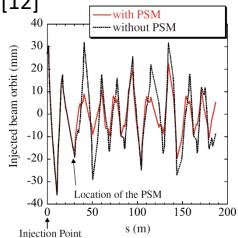
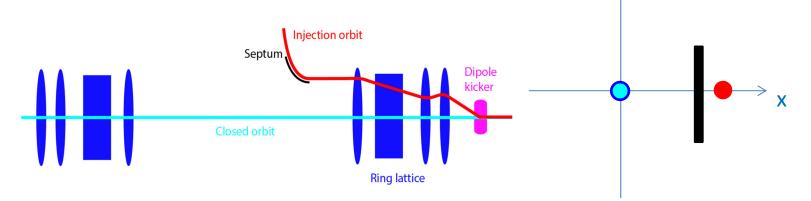


FIG. 8. (Color) Horizontal orbit of the injected beam at the PF ring with (red) and without (black) a PSM. The orbit displays the first circulation of the beam.

• Disturbance to the stored beam measured at KEK PF (and PF-AR)

Kicker bump	Kicker
	PSM
Sextupole kicker	
Quadrupole kicker	PQM @PF-AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1 5 10 15 20 y Turn number
Figure from [12]	Figure 4: Turn-by-turn stored beam profiles in the kicker, PSM, and PQM injections measured by using a fast-gated camera.

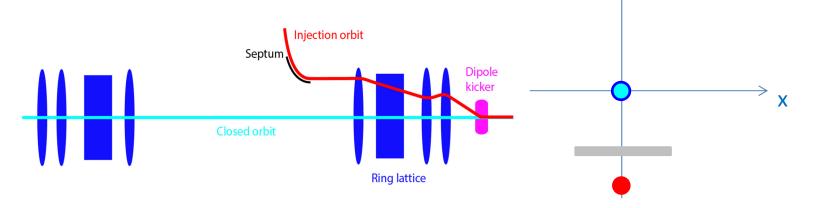

Swap-out injection (1)

- Swap-out injection
 - Proposed for APS upgrade [13, 14]

[13] M. Borland, NIM-A (2000).[14] L. Emery and M. Borland, PAC'03.

X' ∧

- Layout and beams in phase space
 - Septum + Short pulse kicker (Bunch-by-bunch injection) or Kicker with flat-top (Bunch train)
 - Required dynamic aperture is fully minimized

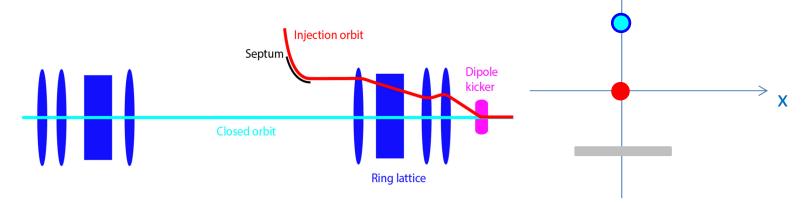

Swap-out injection (1)

- Swap-out injection
 - Proposed for APS upgrade [13, 14]

[13] M. Borland, NIM-A (2000).[14] L. Emery and M. Borland, PAC'03.

X' ∧

- Layout and beams in phase space
 - Septum + Short pulse kicker (Bunch-by-bunch injection) or Kicker with flat-top (Bunch train)
 - Required dynamic aperture is fully minimized

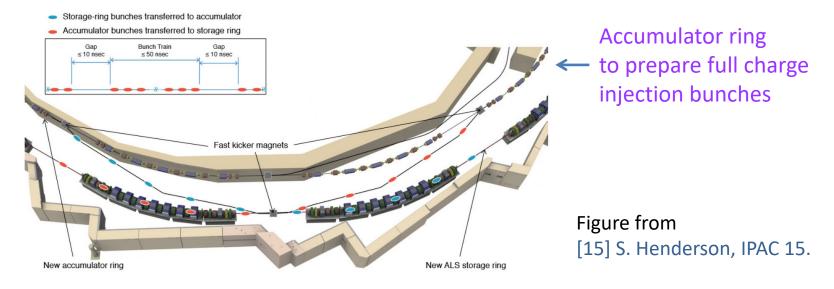

Swap-out injection (1)

- Swap-out injection
 - Proposed for APS upgrade [13, 14]

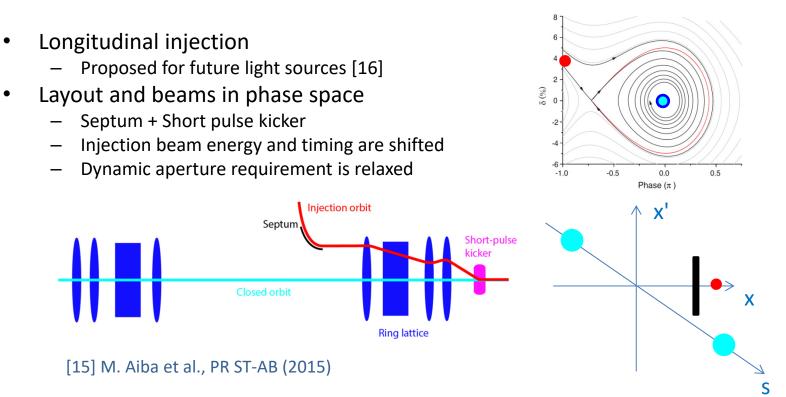
[13] M. Borland, NIM-A (2000).[14] L. Emery and M. Borland, PAC'03.

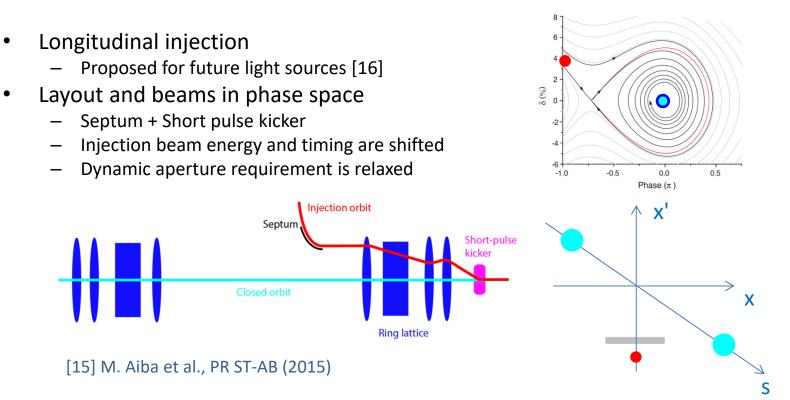
X' ∧

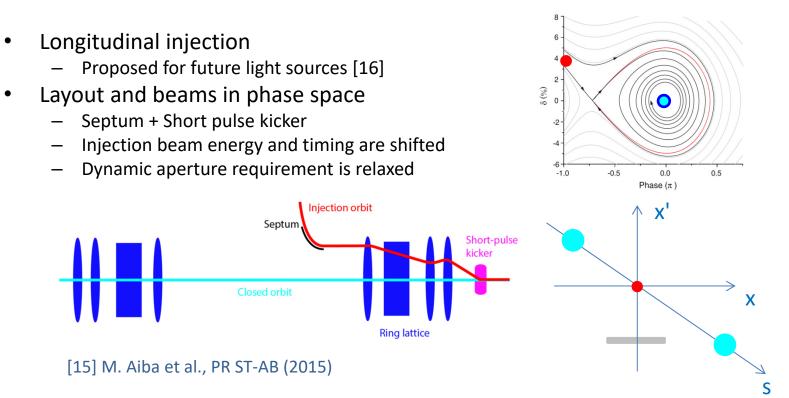
- Layout and beams in phase space
 - Septum + Short pulse kicker (Bunch-by-bunch injection) or Kicker with flat-top (Bunch train)
 - Required dynamic aperture is fully minimized



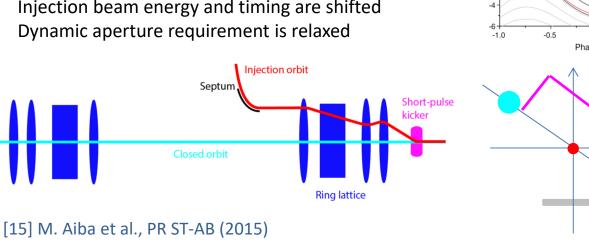
Swap-out injection (2)

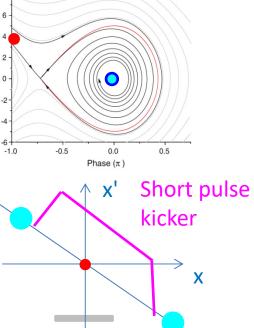

• Plan at ALS upgrade, bunch train swapping-out


Longitudinal injection (1)


Longitudinal injection (1)

Longitudinal injection (1)

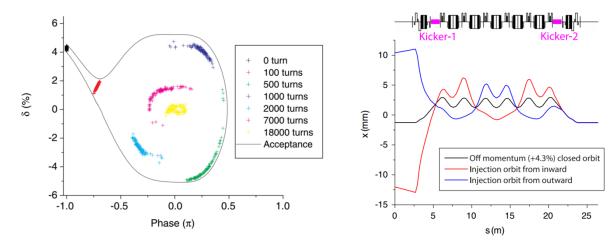




Longitudinal injection (1)

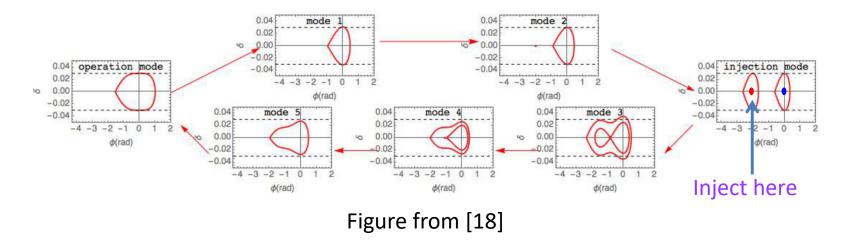
8 (%)

- Longitudinal injection ٠
 - Proposed for future light sources [16]
- Layout and beams in phase space •
 - Septum + Short pulse kicker _
 - Injection beam energy and timing are shifted —
 - Dynamic aperture requirement is relaxed _


S

Longitudinal injection (2)

- Simulation with MAX-IV lattice (100 MHz RF) [16]
 - Linac injector provides small longitudinal emittance
 - 100 % injection efficiency achieved



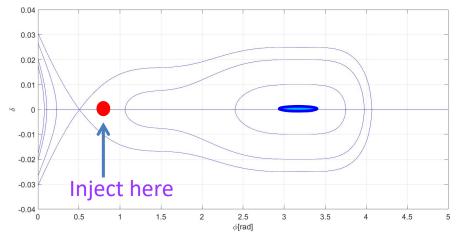
Longitudinal injection (3)

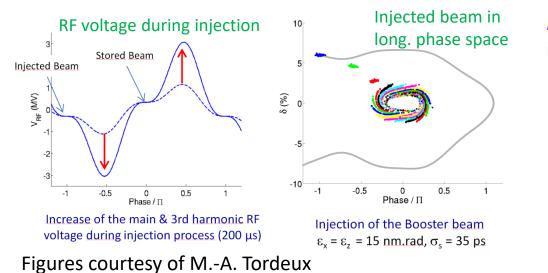
- Longitudinal injection with bunch merging [17, 18]
 - Fundamental and 2nd harmonic cavities are used
 - Large longitudinal emittance can be accepted

[17] B. C. Jiang et al., NIM-A, (2016).[18] G. Xu et al., IPAC 16.

Longitudinal injection (4)

- Longitudinal injection with 3 RF systems [19]
 - 3rd harmonic cavity is widely used for bunch lengthening
 - One more RF system to further prolong the bunch and RF bucket (1+2+3)




Figure from [19] G. Xu, TWIIS (2017)

Longitudinal injection (5)

- Longitudinal injection with "Longitudinal nonlinear kicker", for SOLEIL upgrade [20]
 - RF voltages and phases of fundamental and 3rd harmonic cavities are varied during injection
 - Synchrotron oscillation of injection beam is quickly damped while the stored beam while the stored beam is unaffected
 - Possibly combined with off-energy MKI to avoid short pulse kicker

[20] M.-A. Tordeux, TWIIS (2017).

Analogy with transverse resonance injection:

Quad + Multipole to control trajectory in transverse phase space

1

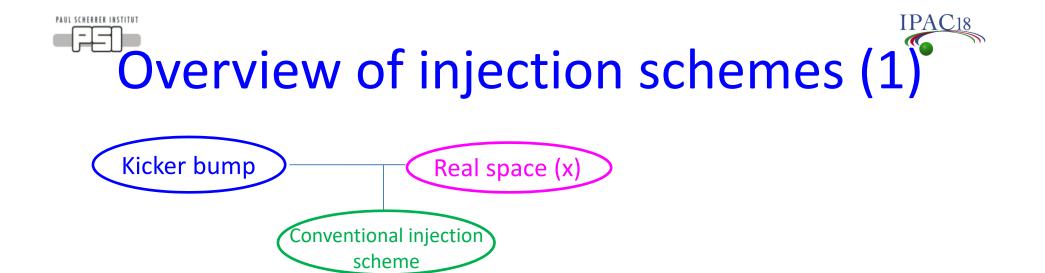
Fundamental +3rd harmonic RF cavities to control trajectory in long. phase space

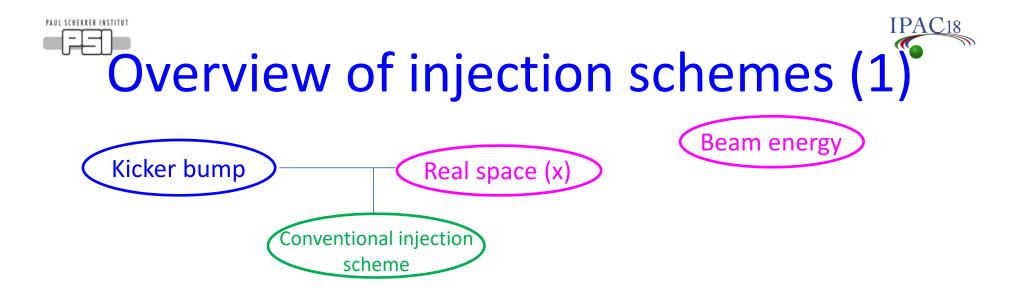
- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

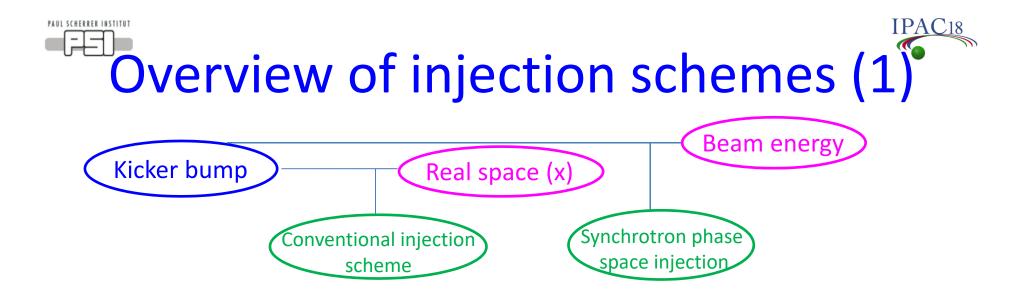
Separation and kicker type

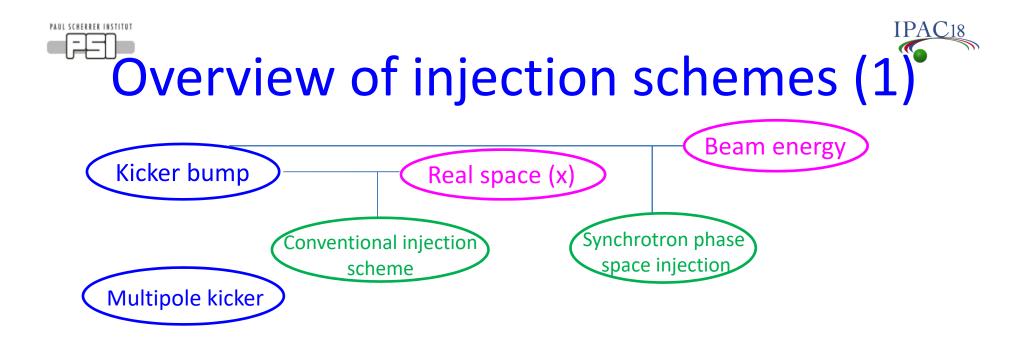
- Separation
 - At the time of injection, the injection beam must be separated from the stored beam ↔ Liouville's theorem
 - The injection beam is later merged to the stored beam \leftrightarrow Synchrotron radiation damping
- Kickers
 - Various types of kicker are available
 - Kicker bump, multipole kicker, short pulse kicker, etc.

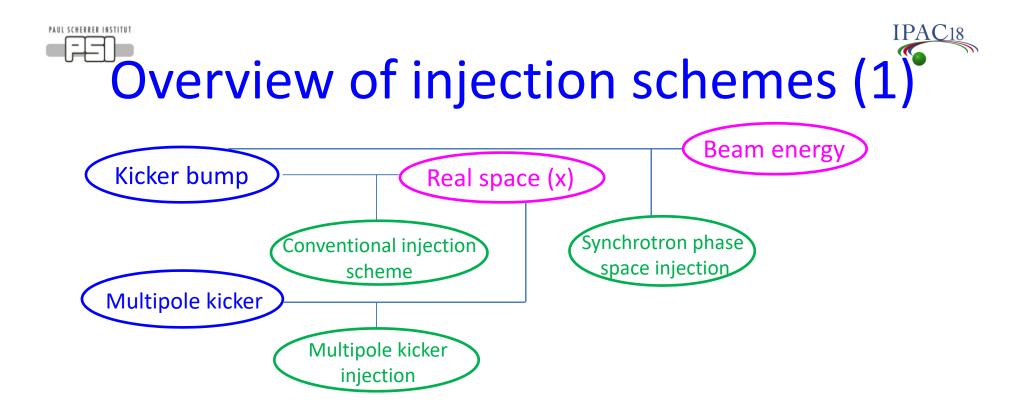
Separation planes \times Kicker types \rightarrow a number of injection schemes

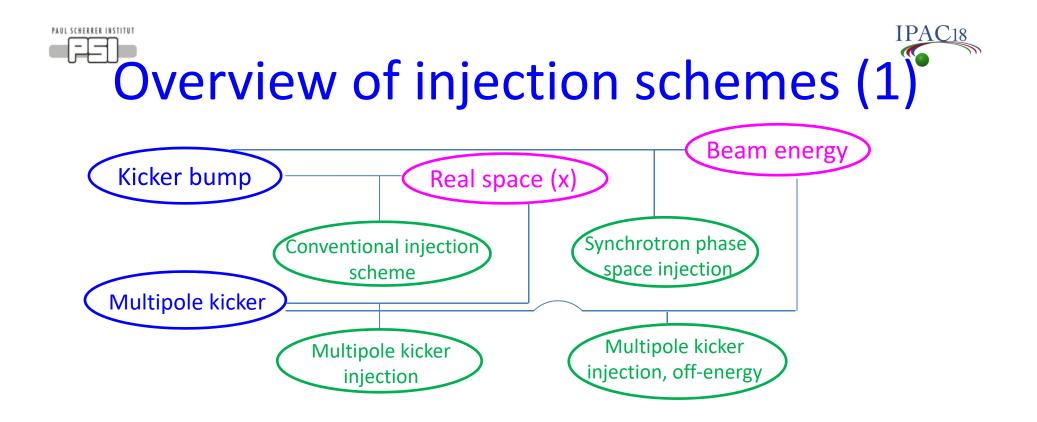


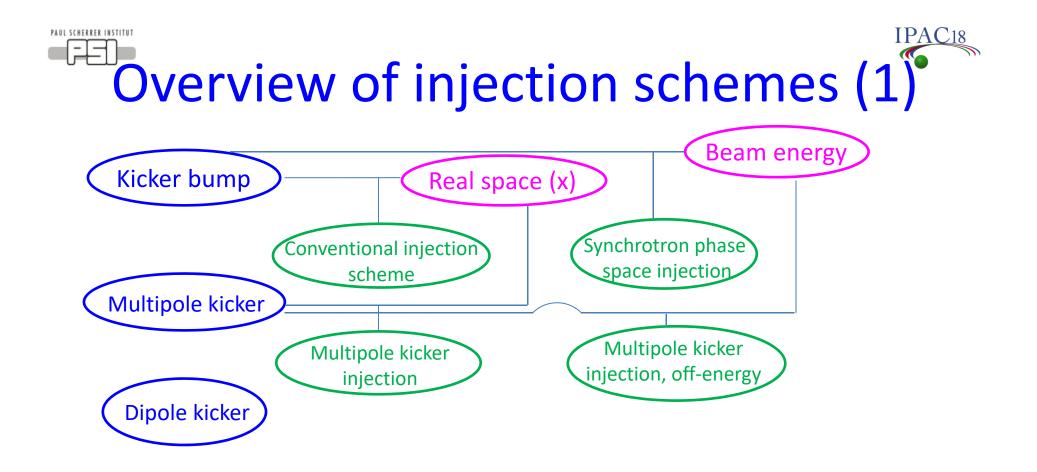


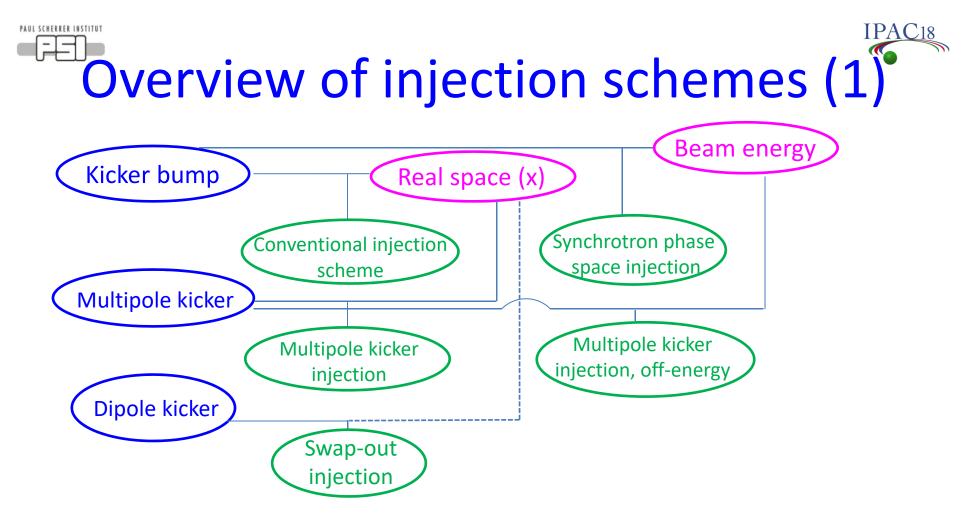


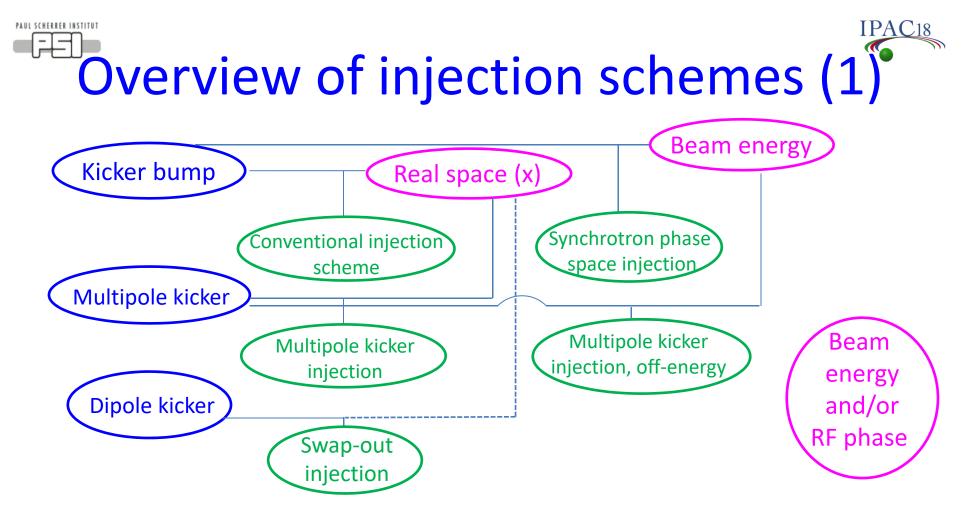


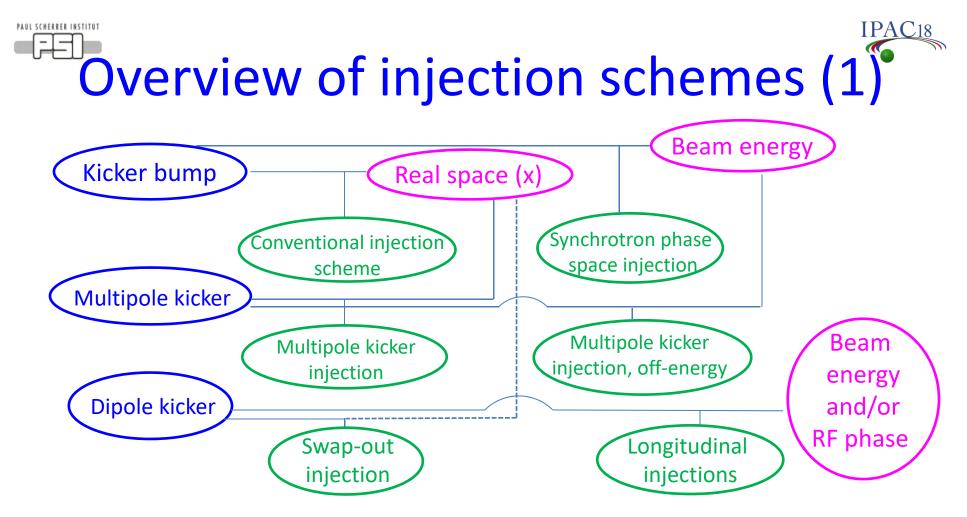


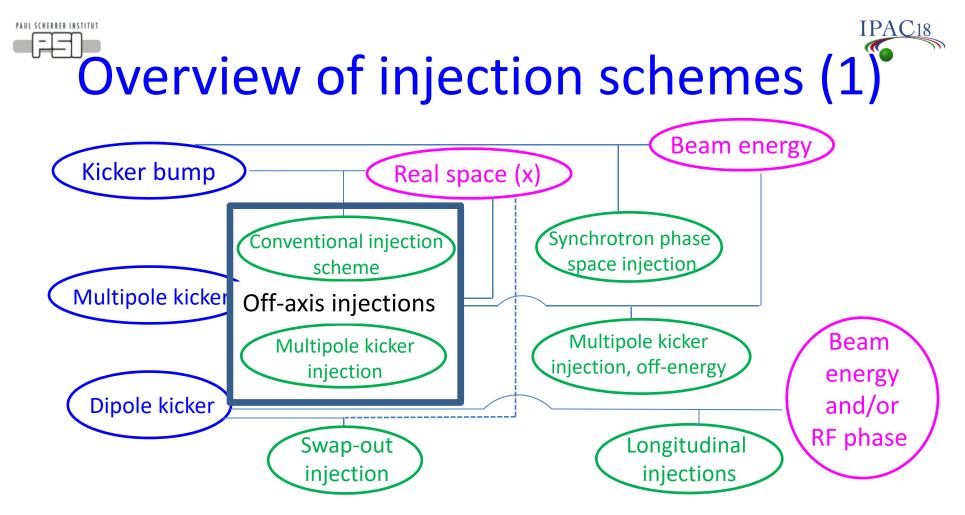


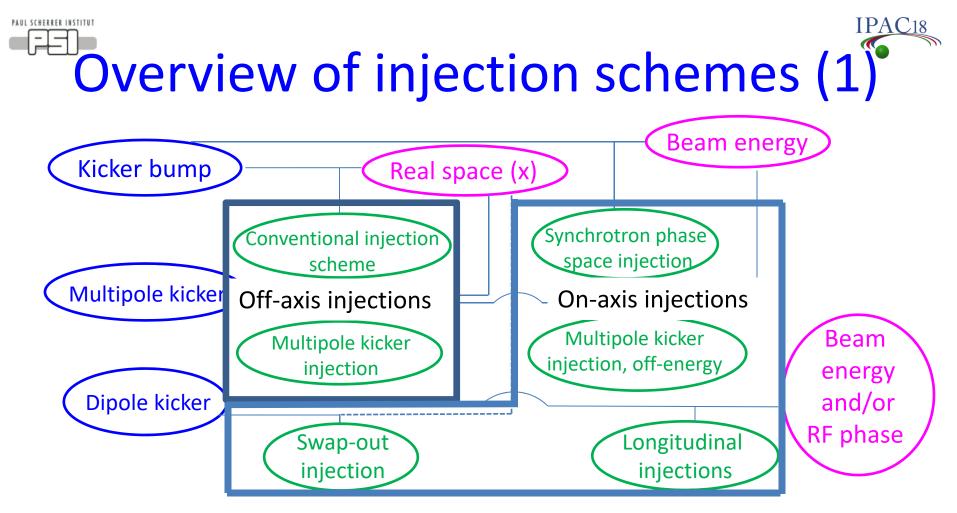


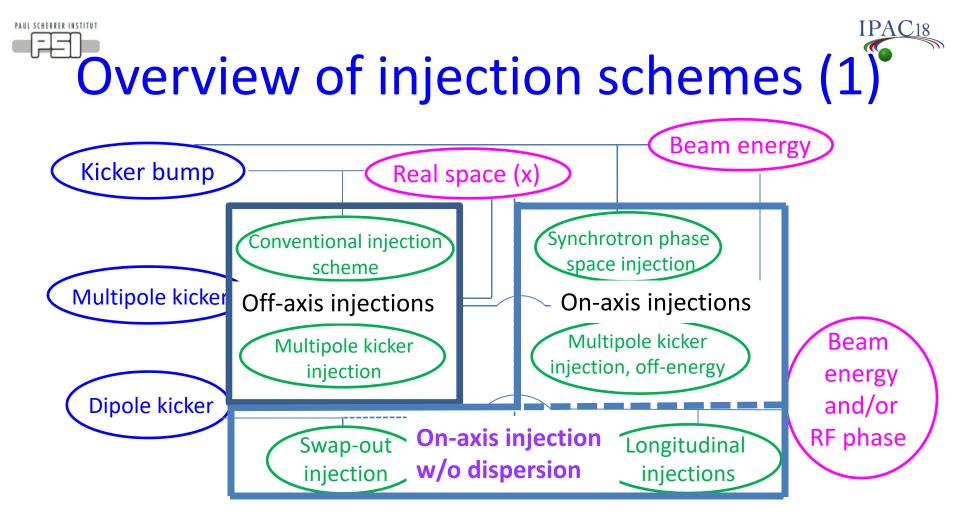








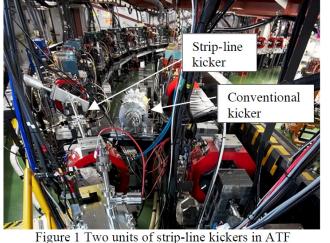


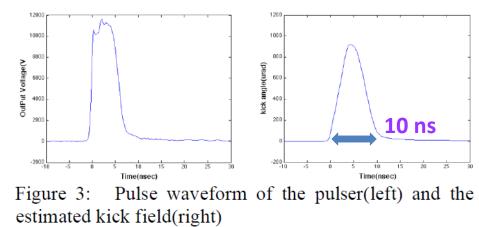


Overview of injection schemes (2)

• Overview in a table...

Injection scheme	Separation	Kicker type	Dispersion requirement
Conventional injection	Transverse	Kicker bump	None (Zero at septum)
Synch. phase space inj.	Beam energy	Kicker bump	Finite at Septum
Multipole kicker inj.	Transverse	Multipole/Nonlinear kicker	None
MKI, off-energy	Beam energy	Multipole/Nonlienar kicker	Finite at kicker
Swap-out injection,	Transverse	Short/Long pulse (dipole) kicker	None
Long. inj.	Beam energy and RF phase	Short pulse kicker	None
Long. inj., 2 rf	RF phase	Short pulse kicker	None
Long. inj., 3 rf	RF phase	Short pulse kicker	None
Long. inj., long. NLK	Beam energy and RF phase	Multipole/Short-pulse kicker	None


- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References



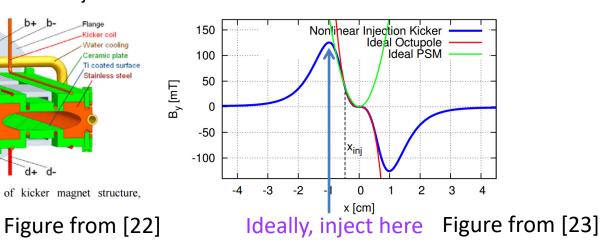
Short pulse kicker

• Short pulse kicker development at KEK ATF [21]

Figures from [21] T. Naito et al., IPAC'10

Nonlinear kicker

- Nonlinear kicker to improve MKI. Development at BESSY-II [22] and MAX-IV/SOLEIL ٠ [23]
 - Kicker consists of 8 coils —
 - Wider zero/small field region around the axis —


Kicker coi Water cooling

Ceramic plate Ti coated surface Stainless steel

Zero/small gradient for injection beam —

Figure 3: Sectional view of kicker magnet structure,

second magnet design.

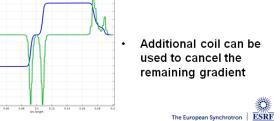
[21] T. Atkinson et al., IPAC'11 [22] S. C. Leemann and L. O. Dalin, PAC'13

IPAC₁₈

New idea for MKI kicker

determines:

maximum field


Distance to achieve

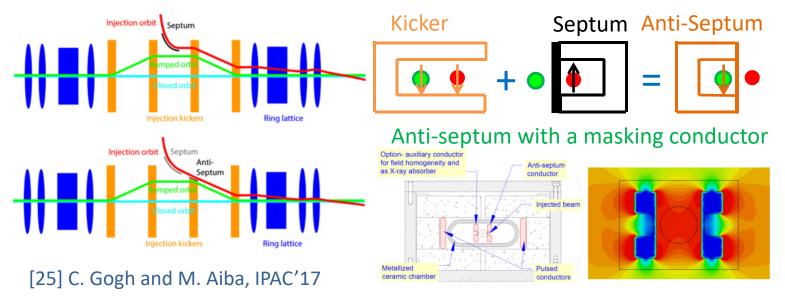
POSSIBLE OTHER APPLICATION

- The injection straight section features the same vertical b-function as ID straights
- We need to top-up with closed gap, i.e. through a 6mm vertical aperture ٠
- Use this principle to design a low gap in-vacuum non-linear kicker/bladeless septum \geq

- · 2 c-shape kickers separated by copper plates:
- Zero dipole on axis, small quadrupole •
- Injected beam sees almost no gradient • (interesting in case of large injected emittance)
- Low gap: very high field achievable ٠

0.08 0.1 Arc length

Page 15 TWIIS workshop - 28 - 30 August 2017


[24] S. White, TWIIS, 2017

Anti-septum

- "Anti-septum" [25]
 - Typical eddy current septum thickness of about 3 mm can be reduce to 1 mm or less since stray field is excited at the other side
 - Dynamic aperture requirement of the conventional injection scheme is relaxed

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

Emittance exchange

- Simulation of emittance exchange in BESSY-II booster [26]
 - $-\varepsilon_x \gg \varepsilon_y \rightarrow \varepsilon_x \ll \varepsilon_y$ using a pulse skew quadrupole

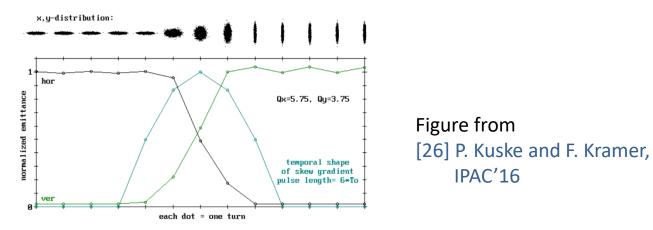


Figure 4: Impact of a skew quadrupole π -pulse on the emittance in the synchrotron.

Full energy linac injector

- Linac injector is capable of providing small emittance injection beam
- Light source + FEL at the same cite, a few examples
 - PSI: SLS + SwissFEL (Unfortunately separated by the river...)
 - RIKEN: SPring-8 + SACLA (New transport line is built)
 - Lund: MAX IV + Short pulse facility (Used as injector by design)

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

- Top-up operation has vastly increased the performance of lepton colliders and light sources
- Future accelerators, however, may need advanced injection schemes
 - Relaxing aperture requirement
 - Eliminating disturbance to the stored beam
 - Achieving 100% injection efficiency
- Dynamic aperture requirement qualitatively
 - Swap-out injection < On-axis injections < Conventional injection
- Kicker and septum developments to support new injection schemes have been performed/underway
- Possible improvements on injector are being explored

- Brief history of top-up injection
- Conventional injection scheme
- Demand in the future accelerators
- New(er) schemes
- Overview
- Kicker and septum R&D
- Improvements on injector
- Summary
- References

References

[1] J. T. Seeman, "Injection Issues of Electron-Positron Storage Rings", Proc. of B FACTORIES: The State of the Art in Accelerators, Detectors and Physics, SLAC-400, pp.233-241 (1998).

[2] U. Wienands, "Lepton Collider Operation with Constant Currents", Proc. of PAC'05, pp.149-153.

[3] M. Satoh, "Simultaneous Top-up Injection for Three Different Rings in KEK Injector Linac", Proc. of IPAC'10, pp. 4287-4289.

[4] J. T. Seeman, "Top Up Injection at PEP-II and Applications to a Circular e+e- Higgs Factory", Proc. of HF2014, pp. 205-209.

[5] S. Nakamura et al., "Present Status of the 1 GeV Synchrotron Radiation Source at SORTEC", Proc. of EPAC'90, p.472-474.

[6] H. Ohkuma, "Top-up Operation in Light Sources", Proc. of EPAC'08, pp.36-40 (2008).

[7] S. Myers, "A Possible New Injection and Accumulation Scheme for LEP", LEP Note 334 (1981).

[8] P. Collier, Synchrotron Phase Space Injection into LEP, Proc. of PAC 95, pp. 551--553.

[9] K. Harada, Y. Kobayashi, T. Miyajima, and S. Nagahashi, "New injection scheme using a pulsed quadrupole magnet in electron storage rings", Phys. Rev. ST Accel. Beams, 10, 123501 (2007).

[10] H. Takaki et al., "Beam Injection with a Pulsed Sextupole Magnet in an Electron Storage Ring", Phys. Rev. ST Accel. Beams, 13, 020705 (2010).

[11] A. Saa Hernandez, "Longitudinal Top-up Injection for Small Aperture Storage Rings", Presentation at 4th Low Emittance Ring Workshop, https://agenda.infn.it/conferenceDisplay.py?confld=7766 (2014)

[12] R. Takai et al., "Beam Profile Measurement during Top-up Injection with a Pulsed Sextupole Magnet," Proc. of DIPAC'11, pp.305-307.

[13] M. Borland, "A super-bright storage ring alternative to an energy recovery linac", Nucl. Instrum. and Methods in Phys. Research Section A, Vol. 557, pp. 230-235 (2000).

[14] L. Emery and M. Borland, "Possible Long-Term Improvements to the Advanced Photon Source", Proc. of PAC 03, pp. 256-258.

[15] S. Henderson, "Status of the APS Upgrade Project", Proc. of IPAC 15, pp. 1791-1793.

[16] M. Aiba et al., "Longitudinal Injection Scheme Using Short Pulse Kicker for Small Aperture Electron Storage Rings", Phys. Rev. ST Accel. Beams, 18, 020701 (2015).

[17] B. C. Jiang et al., "Using a double-frequency RF system to facilitate on-axis beam accumulation in a storage ring", Nucl. Instrum. and Methods in Phys. Research Section A, Volume 814, pp. 1-5 (2016).

[18] G. Xu et al., "On-axis Beam Accumulation Enabled by Phase Adjustment of a Double-Frequency RF System for Diffraction-Limited Storage Rings", Proc. of IPAC '16, pp. 2032-2035 (2016).
 [19] G. Xu, "Longitudinal Accumulation in Triple RF Systems", Presentation at Topical Workshop on Injection and Injection System, https://indico.cern.ch/event/635514/overview (2017).
 [20] M.-A. Tordeux, "Longitudinal Injection into Low-Emittance Ring: A Novel Scheme for SOLEIL Upgrade", Presentation at Topical Workshop on Injection and Injection System, https://indico.cern.ch/event/635514/overview (2017).

[21] T. Naito et al., "Multi-Bunch Beam Extraction Using Strip-line Kicker at ATF", Nucl. Instrum. and Methods in Phys. Research Section A, Vol. 571, pp. 599--607, 2007

[22] T. Atkinson et al., "Development of a Non-linear Kicker System to Facilitate a New Injection Scheme for the BESSY II Storage Ring", Proc. of IPAC'11, pp. 3394-3396.

[23] S. C. Leemann and L. O. Dalin, "Progress on Pulsed Muktipole Injection for the MAX IV Storage Rings", Proc. of PAC'13, pp.1052-1054

[24] S. White, "Experience at ESRF", Presentation at Topical Workshop on Injection and Injection System, https://indico.cern.ch/event/635514/overview (2017)

[25] C. Gogh and M. Aiba, "Top-Up Injection with Anti-Septum", Proc. of IPAC'17, pp. 774-776.

[26] P. Kuske and F. Kramer, "Transverse Emittance for Improved Injection Efficiency", Proc. of IPAC 16, pp. 2028--2031.