AN EBIS-BASED LOW-ENERGY ACCELERATOR FACILITY FOR FINE-FOCUSSED HIGHLY CHARGED ION BEAMS

International Particle Accelerator Conference 2018

Mike Schmidt

ACUUM

MC-8: Applications of Accelerators, Technology Transfer and Industrial Relations

Dreebit

PFEIFFER

IPAC2018, Vancouver

- Introduction
- HCI-FIB Setup
- Electron Beam Ion Sources (EBIS)
- Focused Ion Beam (FIB) Optics
- Experimental Results
- SEM Imaging
- . Emittance Measurement
- Outlook

- Technologies based on Focused Ion Beams became very widespread throughout research and industrial sectors
- Modification and analysis of targets with one device possible
- Advantages of Room-temperature EBIS:
 - Broad kinetic energy range up to MeV
 - . Virtually all elements usable as projectiles
 - Production of highly charged ions (HCI) possible
 - . Tabletop size

Overview

Overview

PFEIFFER VACUUM

Dresden EBIS – Basic Principle

- . Ionization via high-density electron beam
- . Pulsed mode (μ s) and DC mode ion extraction

- Electron beam energy up to 25 keV allows for production of Highly Charged Ions (HCIs)
- Small kinetic ion energy distribution < 10 eV
- Small ionization area -> high ion beam brightness

Dreebit EBIS-M

PFEIFFER VACUUM

- 50 mA * • Max. electron current:
- 25 keV • Max. electron energy:
- Magnet system: NdFeB permanent magnets (bakeable)
- Magnetic induction on axis:

500 mT

- Trap length: 60 mm
- Ionization factor:

- $> 1 \cdot 10^{21} \text{ e/cm}^2$
- Specially designed third drift tube for optimal alignment
- * Use of larger cathode possible but without reasonable advantages

Dreebit EBIS-M

- . Maximum charge state determined by ionization factor, ionization time, and pressure
- Highest charge states available in pulsed mode:

Element	Max. charge state q		
Argon	18+		
Krypton	36+		
Xenon	46+		
Gold	69+		
Iridium	71+		

• Intermediate charge states in DC mode:

• Maximum charge state

Dreebit EBIS-M

Dreebit EBIS-M

• Kinetic energy determined by charge state q and acceleration potential U_0 $E_{kin} = q \cdot U_0$

• U_0 variable between 5 and 20 kV

Element	Max. charge state q	Kin. energy [keV]
Argon	18+	360
Krypton	36+	720
Xenon	44+	880
Gold	69+	1380
Iridium	71+	1420

HCI-FIB

- . Charge state selection via Wien filter
- Can induce certain effects on surface impact (special structures, increased sputter and secondary ion yield)

Element	Max. charge state q	Kin. energy [keV]	Potential energy [keV]
Argon	18+	360	14.4
Krypton	36+	720	75.8
Xenon	44+	880	51.1
Gold	69+	1380	205.5
Iridium	71+	1420	226.6

HCI-FIB

Focused Ion Beam Optics

PFEIFFER VACUUM

a – Wien filter b – Aperture c – Einzel lens d – Octupole

Experimental Results

Beam Width

Ion Beam Technologies

PFEIFFER VACUUM

T

- Determination from SEM image of a golden chessboard pattern on silicon
- Analysis of slopes in the intensity distribution

Beam Width

PFEIFFER VACUUM

. Lower beam width comes with lower transmitted ion current and vice versa

Aperture [µm]	Beam width [µm]	lon beam current [pA]
1000	< 1000	> 500
1000	40	> 300
100	< 20	10

SEM imaging

PFEIFFER VACUUM

7 pA He, E = 11.5 keV

Experimental Results

PFEIFFER VACUUM

SEM imaging

- SEM image captured with Ar^{8+} , I_{ion} =3 pA, U_0 =12 kV, 80µm aperture
- Beam width: ≈ 1 µm
- Credit: Leibniz Joint Lab Single Ion Implantation

Experimental Results

Beam Quality

- Emittance derived from the beam width evolution in field free space
- Measurement method described in "F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik"
- Three beam width measurements at three different points required to calculate the sigma matrix
- Emittance measured in target chamber:
 - $\epsilon \sim 1 \text{ mm mrad}$
- High beam quality makes EBIS suitable for ion optical elements with a low acceptance

х

- Determination of ultimate minimum beam width (integral and charge state separated)
- Combination of SEM imaging and surface analysis via ToF-SIMS

Thank you for your attention

