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Abstract 
Equations for the synchrotron motion are derived from 

the Hamiltonian, which was composed of coasting, beta-
tron and synchrotron motions. The synchrotron oscillation 
is not only an oscillation of the revolution frequency but 
also an oscillation of the average radius. The synchrotron 
oscillation, which is both longitudinal and horizontal oscil-
lations, can exchange energy with the betatron oscillation, 
which is a horizontal oscillation. The synchrotron oscilla-
tion occurs under a constant particle velocity and the s de-
scription is equivalent to the t   description. Coriolis like 
force acting on its horizontal oscillation brings out its lon-
gitudinal oscillation. 
 

INTRODUCTION 
We discuss the oscillating synchrotron motion [1] using 

the Hamiltonian composed of coasting, synchrotron and 
betatron motions. We call it the synchrotron oscillation. 
The Hamiltonian, which clarified the synchro-betatron re-
sonant coupling mechanism in a storage ring, revealed that 
the energy exchange between the synchrotron and betatron 
oscillations was possible [2]. The synchrotron and betatron 
oscillations are obtained with s as an independent variable 
[3]. The betatron oscillation is an oscillation in the horizon-
tal direction. We call it a horizontal oscillation. Since the 
synchrotron oscillation is accompanied by orbiting parti-
cles and occurs in the orbital direction, it is an oscillation 
in the longitudinal direction. We call it a longitudinal os-
cillation. Unless a horizontal component of the synchrotron 
oscillation exists, the energy exchange between those two 
oscillations is impossible. We show that the synchrotron 
oscillation derived from the Hamiltonian is not only a lon-
gitudinal oscillation but also a horizontal one and discuss 
about its new feature.   
 

THE HAMILTONIAN  
FOR ORBITING PARTICLES 

In the right-handed curvilinear coordinate system
, , ,x s zA is the vector potential, is the momen-

tum. Here s is the orbital length. For an orbital momentum
sp , the particle is moving in a counterclockwise direction. 

We assume that an on-momentum particle of mass m and 
momentum 0p   is revolving (without oscillating motion) 
on the reference closed orbit of the average radius R un-
der the dipole magnetic field 0B .  Around the reference 
closed orbit, x  is the horizontal coordinate and xp is the 

horizontal momentum. We have the following relations for 
the on-momentum particle: the velocity dsv

dt
   which sat-

isfies , the orbit angle  which satisfies s
R

   and 

the angular revolution frequency   which satisfy d
dt
  . 

Since we have d s c

dt R R

   
 
 

, 

                       R  .                                                                 (1) 
Here q is the elementary charge, c is the velocity of light, 
t   is time and    is the bending radius (curvature) where 

0 0p c qB   is satisfied.  
We have the following relations: 

 ,  and ,    (2) 

where and 0E  is the total energy of the on mo-

mentum particle. 
We have  ,   and 

0 0 sp p p  . We neglect vertical motion and put  
and .  

Then define  and . is the 
momentum deviation and is the deviation of the kinetic 
energy of the off-momentum (orbiting) particle from the 
on-momentum (revolving) particle. Define a symbol of ra-

tionalized fractional deviation 
2

0

E
E

 
 . We transform 

coordinate system of  onto  then to .

    
(3) 

Around the off-momentum closed orbit, is the horizon-
tal coordinate and is the horizontal momentum.  is the 
arrival time of the off-momentum particle. They satisfy the 
following relations [4]: 
                        ,                                           (4) 

                      ,                                        (5) 

                         ,                         (6) 

where D is the dispersion function. 
The phase of the orbiting particle  is given as follows:

st
R

  
  .                                 (7) 
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Define  0

1 x
p
pD D

c
x


   and

 
where the prime denotes differentiation with respect to s . 
Then t t    and D     where t   and t   . 
In fact . The delay phase D  is equivalent to the 

phase delay        . 
The delay time  is the time delay of the off-momentum 

particle from the on-momentum particle and s  is corre-
sponding orbital length. Actually oscillations are periodic 
deviations of the orbit of the off-momentum particle from 
the orbit of the on-momentum particle. In fact the (ration-
alized) fractional deviation consists of two components:

. Keeping up to the 2nd order to describe an 
orbiting particle with coasting, betatron and synchrotron 
motions, the Hamiltonian composed of three motions is 
given as follows from Eq. (21) of Ref. [2]: 

      

        

2
22

0

0

2

1 1 1
1

2 2 2

cos cos sin
2

C SC S

D S D S S D

xp K
pxH x

hqV

E

  

       


       

      

 
.(8) 

where (oscillating component) is the (rationalized) frac-
tional deviation of the kinetic energy caused by the syn-
chrotron oscillation and (DC component) is the (ration-
alized) fractional deviation of the kinetic energy caused by 
the dispersion. The coasting motion consists of the 0th (on-
momentum particle) and 1st ( and ) order effects. h  
is the harmonic number.  is the phase slip factor.  
 

OSCILLATIONS 
OBTAINED FROM THE HAMILTONIAN 

Since on-momentum particles are revolving on the refer-
ence closed orbit, both the betatron and the synchrotron os-
cillations are excited by orbiting off-momentum particles. 
We discuss about the synchrotron oscillation which is ob-
tained when  is satisfied. Hamilton's equations of 

motion for  , S   are obtained from H as follows: 

 ,         (9)
  

 .
 
                 (10) 

We consider a small amplitude oscillation of . 
Putting , we can differentiate RHS of Eq. (9), 

            .            (11) 

From Eqs. (10) and (11), 

 

      

2

2 2
0

2
0

cos
2

cos
1

2

S DS

S D
C S

hqVd d
d E d

hqV
E

  
  

 
  




 


     

.     (12) 

Then, 
              .               (13) 

We obtain the following equations. 
                     0 0

ˆ coss s         ,                 (14)

 2
2

2 2
0

cos
2

S Ds
s

hqV
E

  
 


    ,          (15) 

where 
 0

1
C C


    


 and  is an integration con-

stant. is the angular synchrotron frequency, s   is the 

synchrotron tune and  is the amplitude of oscillation. 
Generally  and we can choose  at . 
We can neglect this term. From Eq. (14) 

    0
1ˆ cosS s C    


   


.                (16) 

And,  
    0

ˆ cos 1S s C            .          (17) 
We have the following relation [5]: 
                                   

s
 



  ,                              (18) 

where    is the deviation of angular revolution fre-
quency caused by the synchrotron oscillation. Keeping up 
to the 1st order, 
             0

ˆ
cos 1s C     

 
 

     ,         (19) 

where ̂ is the amplitude of oscillation which satisfies 
ˆ ˆ 




  . 

If we choose , from Eq. (19), 

              0
ˆ

cos 1s
    
 
 

   .                 (20) 

 is an oscillation around  . However,    can be 
larger than . It is embracing. So we choose 1C


  and we 

obtain a rationalized equation.  

                      0
ˆ

cos s
    
 
 

  .              (21) 

Now  is a standing wave oscillation on the kinetic 
frame revolving with . 
The angular frequency of the revolving particle is 

changed periodically but very slowly in the longitudinal 
oscillation. In practical situation, however, the particle re-
volves many times for one longitudinal oscillation and it is 
not easy to detect the synchrotron tune in that direction. So 
why the synchrotron tune is detectable in experiments? 

 0D
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We have dealt with the coordinate S . Since the coor-

dinate system is  , S  , we now consider the coordinate

. We again consider a small amplitude oscillation of . 
Putting , from Eqs. (10) and (11), 

                 
 

   

2 2

2 2

2
0

cos
2

S
S

S D
S

dd d
d d d

hqV
E

   
  

  
 



   


  

,             (22) 

Using Eq. (15), we have 

                  
2

2
2 SS S

d
d

    


      ,                (23) 

               0
ˆ cosS s C         ,            (24) 

where  is the amplitude of oscillation and  is an inte-
gration constant.  

From the definition of the phase in Eq. (7),  

                               st
R

  
  .                                 (25) 

Putting S t    and 2s R    since  is the 
circumference, we have 

                         ,                               (26) 

where R  is the deviation of average radius caused by the 
synchrotron oscillation. 

Then we have, from Eq. (24) , 

           0

ˆ
cos

2S
R R C

R R
  


 

     ,           (27) 

where is the amplitude of oscillation which satisfies 
ˆˆ 2 R

R
  
  .  

If we choose 0C  , from Eq. (27), we obtain another ra-
tionalized equation. 

                        0

ˆ
cos s

R R
R R

   
    .            (28) 

R is a standing wave oscillation around R . 

From Eq. (26), we have the phase delay 2 R
R
 

   . 

After   , the oscillating off-momentum particle deviates
  from the on-momentum particle. 

DISCUSSION 

The synchrotron motion turns to be a simple harmonic os-
cillation when  is satisfied. The synchrotron oscil-
lation is the oscillation of the angular revolution frequency 
(Eq. (21)) and the oscillation of the average radius 
(Eq. (28)) at the same time. Two pictures are equivalent but 
represent oscillations of two different directions. Since the 
first one occurs in the orbital direction, it is a longitudinal 
oscillation. For the second one, the average radius of the 

orbiting particle oscillates also around the reference closed 
orbit. Since it occurs in the radial direction, it is a horizon-
tal oscillation. So the synchrotron tune of the horizontal os-
cillation is detectable in ordinary experiments. 

The synchrotron oscillation is a standing wave oscilla-
tion in both longitudinal and horizontal directions. Since 
they are an equivalent oscillation, we can assume 

R
R



 

   and 
ˆˆ R

R


 

  . 

From Eq. (1), R d dR
R R

 
 
 

     . 

Then ,      0 dR Rd d R d       .  
We have 

                       .                                    (29) 
The particle is oscillating around the reference closed 

orbit under a constant velocity.  In the synchrotron oscilla-
tion, as the particle circles the outer orbit, increases and 
 decreases so that that the velocity is kept constant. On 
the other hand, as the particle circles the inner orbit, de-
creases and increases so that that the velocity is kept con-
stant. Therefore, Coriolis like force acting on the horizontal 
oscillation brings out the longitudinal oscillation. 

Since dsv
dt

  , we have ds v dt  . Now v   is a con-

stant of proportionality. It shows that the special difference 
is proportional to the time difference for all particles of the 
same velocity v . There is a coherence between oscillation 
of particles. Therefore, we can observe a clear synchrotron 
oscillation as the coherent synchrotron mode in experi-
ments. The synchrotron motion have been discussed in ei-
ther the s  description [3] or the t  description [5]. In fact, 
the s description is equivalent to the t  description in the os-
cillating synchrotron motion. 
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