
VALIDATING THE COBEA ALGORITHM AT THE DELTA STORAGE
RING

B. Riemann∗, S. Koetter, B.D. Isbarn, S. Khan, T. Weis
DELTA, Dortmund, Germany

Abstract
Closed-Orbit Bilinear-Exponential Analysis (COBEA)

is an algorithm to decompose monitor-corrector response
matrices into (scaled) beta optics values, phase advances,
scaled dispersion and betatron tunes. No explicit magnetic
lattice model is required for COBEA - only the sequence of
monitors and correctors along the beam path (no lengths,
no strengths approach). To obtain absolute beta values, the
length of one drift space can be provided as optional input.

In this work, the application of COBEA to the DELTA stor-
age ring, operated by TU Dortmund University, is discussed,
and its results for betatron tunes and scaled dispersion are
compared with those of conventional, direct measurement
methods. COBEA is also put in a historical perspective to
other diagnostic algorithms. Improvements in the Python im-
plementation of COBEA, which is available as free software,
are presented. Due to COBEA being relatively modest re-
garding its requirements on input data respectively hardware,
it should be applicable to the majority of existing storage
rings.

INTRODUCTION
In the following, only a brief introduction to Closed-Orbit

Bilinear-Exponential Analysis (COBEA) is given due to
space limitations; the interested reader is referred to [1, 2].
Linearized single-particle motion around a closed orbit ob-
served at monitor j in direction w for consecutive turns n
can be described via

r̃ (n)
jw =

∑
m

<
(
Rjmweinµm

)
, (1)

with complex-valued parameters Rjmw that are linked to
(coupled) Ripken optics parameters [3, pp. 30–31] at monitor
positions s j

Rjmw =

√
εm βwm(s j ) eiφwm (sj ) (2)

with the respective betatron amplitude and phase parameters
βwm, φwm and a single-particle invariant of motion εm, and
betatron tunes µm/(2π).

To describe closed-orbit distortion by a corrector at posi-
tion s̃k , one can introduce a topology matrix

Sjk = sign(s j − s̃k ) ∈ {−1,+1}

and complex coefficients Akm that implicitly depend on
strength, betatron amplitude and phase at mode m of the re-
spective corrector. Via dispersion effects, the low-frequency
∗ bernard.riemann@tu-dortmund.de

synchrotron motion is projected into the transverse plane;
introducing the scaled dispersion orbit d jw at monitor po-
sitions and coefficients bk for all correctors, the expression
for a linear closed-orbit perturbation is [2]

rmodel
k jw =

M∑
m

<(Rjmwe−iS jkµm/2 A∗km) + d jwbk (3)

for each response element rk jw using corrector k at monitor
j in direction w. COBEA is able to decompose a measured
response matrix rk jw into the unknown right-hand parame-
ters (absolute for µm, including scaling invariants for other
quantities) with the only additional information being given
by the ordering (not distance) of the monitors and correc-
tors along the beam path; results for the two storage rings
Metrology Light Source and BESSY II can be found in [1,2].

MEASUREMENTS AT DELTA STORAGE
RING

DELTA is a 1.5 GeV synchrotron light source located at
TU Dortmund University, Germany. Beam position moni-
tors of the DELTA storage ring experience un-rectified pin-
cushion distortion (especially near the injection region); the
utilized types of orbit measurement in this work are influ-
enced by this effect in the same fashion and does not com-
promise the following comparison.

Long-Term Betatron Tune Comparison
In the following, results for standard response matrices

of the DELTA storage ring are evaluated using an imple-
mentation of the COBEA algorithm [4]. The betatron tunes
of the DELTA storage ring are routinely monitored at an
effective rate of ≈ 1 Hz by pulsed excitation of a slotted-
pipe rf kicker [5] and monitoring of turn-by-turn data at a
dedicated beam position monitor [6]. Since 2008, these mea-
surement results are also stored as additional information
when recording a corrector-monitor response. This allows
to compare the response-matrix-intrinsic betatron tune that
can be extracted using COBEA with the measured betatron
tune via pulse excitation over a time interval of ≈ 10 years.
The results of this comparison are shown in Fig. 1. It can be
observed that for the majority of cases, the betatron tunes of
both methods coincide within the error margins of COBEA.1

1 It is interesting to note that COBEA allows to extract betatron tunes from
before 2008, when no tune measurement results were routinely recorded.
As no comparison data exists, those responses are not discussed in this
work.
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Figure 1: Comparison of COBEA tunes (colored lines and
error bars, blue for horizontal, red for vertical plane) with
turn-by-turn measurements (black + and × markers)

Dispersion Comparison
Due to the reduced error margins in recent versions of

COBEA (see appendix), effects like spurious dispersion
coupling of corrector magnets, that typically generate less
than 10% of the response signal, can be used to extract the
shape of the dispersion function, d jw , at monitor positions.
This can be seen as a testcase for the precision of our method.

For the dispersion measurement, the storage ring’s refer-
ence rf frequency νref = 499.819 MHz was varied in steps
of 1 kHz in the interval ±5 kHz, measuring the closed orbit
positions at beam position monitors j. The resulting data

xnj was processed using a quadratic fit

xnj = x (0)
j + x (1)

j (νn − νref) + x (2)
j (νn − νref)2

and the linear coefficients x (1)
j were assumed to be propor-

tional to the dispersion D(s j ).
Agreement between dispersion predictions by COBEA

and the rf detuning measurement can be quantified by a
normalized product of arrays x (1)

j and d jx

a =

∑
j x (1)

j d jx√∑
j (x (1)

j )2
√∑

j d2
jx

.

In case of perfect agreement, the vectors should be paral-
lel (a = 1). For the present comparison between COBEA
results and rf detuning, the agreement is a = 0.984. The
normalized shape of the COBEA dispersion prediction is
compared with rms-normalized x (1)

j values in Fig. 2.

HISTORICAL PERSPECTIVE
Our comparison with related work is based on the recent

review in [7] and on [2].
COBEA allows to obtain approximations (limited by

noise) of particle oscillation parameters Rjmw, µm directly
from elements of the response matrix. To the authors’ knowl-
edge, this largely lattice-independent procedure is not used
in common codes that extract beam optics information from
closed-orbit responses; instead, start values (design values)
from an optics model are used at some stage of each algo-
rithm. Using the monitor-corrector subspace (MCS) rou-
tine [1,2] as “missing piece” allows the COBEA to function
without any input of lattice optics, but only requiring the
ordering of monitors and correctors.

Mapping of known corrector optics to monitor optics had
been explored in [8]. The most similar work to the COBEA
algorithm has been found to be [9], where the ansatz of [8]
was further developed, including a reverse mapping from
monitor optics to corrector optics, and normalization of beta
functions using drift spaces. The iterative procedure de-
scribed in [9] (in which tune optimization may enter in an
outer control loop) corresponds to an iteration until conver-
gence of corrector-monitor mapping in our context, which
would replace the optimization layer.2 A major difference
to COBEA is given by the usage of external initial values
from a pre-existing lattice model in [9]; COBEA generates
its own initial values using MCS [1, 2] and also includes
linear betatron coupling and dispersive effects.

Similar comparisons hold for the fast phase determination
technique in [10] and optics correction at KEKB [11]. In
2 This mapping between spaces is also a technique for bilinear systems –

when the µm values are not included in the optimization procedure, the
remaining problem can be reformulated as a bilinear equation system [2].
While it is guaranteed that each step of this iteration reduces χ2, stagnation
for a non-optimal χ2 value outside of a local minimum is still possible and
occurs in practice. This limits the applicability especially for randomly
generated initial values.
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further development of the latter, reference [12] introduces a
least-squares optimization procedure not including gradient
information and using initial model optics as input; the beta-
tron tunes are determined from an additional measurement
source.

The class of lattice-model optimizers is most prominently
known by LOCO [13] while other programs like CALIF [14]
utilize lattice models in a varying degree. For these tech-
niques, the difference to COBEA is found by their necessity
of a detailed, reasonably well-tuned lattice model, the pa-
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Figure 2: Comparison of COBEA predictions for scaled
dispersion at monitors (blue dots and bars, the latter denoting
computed error margins) with analysis of measurement data
by rf detuning.

rameters of which are tuned to a local optimum; strongly
mismatched or locally incorrect models can lead to poor or
no convergence. While this procedure certainly has many
advantages (like the possibility of fitting monitor errors),
one drawback of this approach is that the output is always
correlated with the underlying assumptions implicit in the
used lattice model and the (more or less arbitrary) free pa-
rameters selected for optimization by the user. To give an
elementary example, optical functions from a ring with a
given (assumed) symmetry must always be symmetric.

In recent years, direct measurement of beam oscillation
data at its eigenfrequncies (turn-by-turn data) has been
successfully used to measure optical parameters instantly,
e.g. [15]. However, the resolution and usability of this data
source depends on the ring size (circulation time), achiev-
able timing accuracy, high environmental stability (thermal
and electric shielding) and, for some techniques, relative
strength of decoherence by anharmonic and/or off-energy
oscillations. In a recent case study it has been suggested that,
depending on the machine parameters, usage of closed-orbit
measurements can still be advantageous [16].

CONCLUSION
COBEA response matrix analysis results have been pre-

sented in comparison with direct dispersion and tune mea-
surements for the DELTA storage ring. An implementation
of COBEA is available online [4] and should be usable for
many storage rings.
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APPENDIX
Based on measurements with K correctors at J moni-

tors for M transverse modes respectively directions, and the
effective degrees of freedom of the BE model including dis-
persion being N = (K + JM)(2M + 1) − (M + 1) [2], the
scalar variance estimate is [17]

〈σ2〉 =
χ2

K JM − N
=

f
f − 1

〈χ2〉, (4)

with f =
K JM

N
>

K JM
K + JM

·
1

2M + 1

being the overdetermination factor of the problem. As a rule
of thumb (assuming K ∝ J), f scales linear with the number
of monitors J in a storage ring 3. For DELTA, f ≈ 7.36
yields a reasonable, although not precise, error estimate.

This scalar variance estimate replaces the one used in
[2], which is considerably larger, in all subsequent error
computations of the Jacobian and Hessian matrices.
3 This limit could be circumvented in the future by parsing the measurement

data needed to create the response matrix directly through cobea, so that
the number of measurements > KJM .
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